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PCG: A Family of Simple Fast Space-Efficient Statistically Good
Algorithms for Random Number Generation

MELISSA E. O’NEILL, Harvey Mudd College

This paper presents a new uniform pseudorandom number generation scheme that is both extremely
practical and statistically good (easily passing L’Ecuyer and Simard’s TestU01 suite). It has a number of
important properties, including solid mathematical foundations, good time and space performance, small code
size, multiple random streams, and better cryptographic properties than are typical for a general-purpose
generator.

The key idea is to pass the output of a fast well-understood “medium quality” random number generator to
an efficient permutation function (a.k.a. hash function), built from composable primitives, that enhances the
quality of the output. The algorithm can be applied at variety of bit sizes, including 64 and 128 bits (which
provide 32- and 64-bit outputs, with periods of 264 and 2128). Optionally, we can provide each b-bit generator
with a b−1 bit stream-selection constant, thereby providing 2b−1 random streams, which are full period and
entirely distinct. An extension adds up to 2b-dimensional equidistribution for a total period of 2b2b

. The
construction of the permutation function and the period-extension technique are both founded on the idea of
permutation functions on tuples.

In its standard variants, b-bit generators use a 2b/2-to-1 function to produce b/2 bits of output. These
functions can be designed to make it difficult for an adversary to discover the generator’s internal state by
examining its output, and thus make it challenging to predict. This property, coupled with the ability to
easily switch between random streams, provides many of the benefits provided by cryptographically secure
generators without the overheads usually associated with those generators.
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1. INTRODUCTION
Random number generation is important throughout computer science. It is a key
element to a huge number of areas, including global optimization, computational
creativity, modeling and simulation, robotics, games, and many more besides. The
correctness or performance of an algorithm can critically depend on the quality of the
random number generation scheme it uses; its competitiveness can depend on the speed
of its generator; and sometimes other criteria, such as security, matter even more. In
short, generator quality matters and quality has many dimensions.
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(b) LinearComp, four sizes

Fig. 1: Almost all generators in widespread use don’t survive very minimal statisti-
cal scrutiny from TestU01 [L’Ecuyer and Simard 2007]. Even one failure indicates a
problem.

The idea of solving problems using machine-generated random numbers has been
with us since 1949, being first applied by a team at Los Alamos (led by Nicholas
Metropolis and including John von Neumann) that needed to model problems in physics
[Metropolis and Ulam 1949]. In the years that have followed, there have been numerous
advances in the area (and some horrendous missteps, such as the RANDU generator
[Knuth 1997]), yet more than sixty years later, with random number generators in
widespread use, there has been no single random number generator that provides all
the properties we might consider valuable.

The current state of affairs is one of islands: there are the fast generators, but the
fast ones mostly aren’t statistically good. There are the statistically good ones, but
they’re mostly not fast. If you can find one that manages to be fast and statistically
good, it won’t be even remotely secure (i.e., its past and future output can be trivially
predicted after observing only a few outputs). And if we add additional criteria, such as
space usage or code size, to the mix, you are completely out of luck.

We will examine these criteria in depth in Section 2, but as a prelude to that, let
us use the highly regarded TestU01 statistical test suite [L’Ecuyer and Simard 2007]
to observe that today, many of the generators in widest use cannot withstand even
minimal statistical scrutiny, sometimes failing statistical tests after generating only a
few thousand numbers. Take a look at Figure 1—perhaps one of your favorite generators
didn’t do as well as you would have hoped!1 (The graph uses a log scale because failing
even one statistical test is a significant problem. The combined tests require less than
fifteen seconds to run.)

For years it has seemed that compromise was inevitable, and no one would be
entirely happy. Academics would despair at the statistically weak generators that
practitioners use, practitioners would shake their heads at the slow, or otherwise
impractical, generators that academics propose, and cryptographers would wonder
when someone would finally pay attention to security.

This paper changes that state of affairs. It introduces a new family of generators that
set a new standard for combining desirable properties. Pleasantly, this new generation

1 In Figure 1(b), TestU01’s linear complexity test [Carter 1989; Erdmann 1992; L’Ecuyer and Simard 2007] is
run at sizes 5000, 25000, 50000, and 75000 and usually completes in under a second. It is discussed in more
detail in Section 2.1.2, which also discusses the entire process of applying statistical tests.
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scheme applies a simple insight to a widely used technique. At its core, it is the idea of
using a randomized algorithm to enhance randomness. Variations on the idea have been
tried in the past (see Section 9 for related work), but the particular way randomization
is achieved is new. I hope that by the end of the paper you will agree that the idea is
obvious in retrospect.

1.1. Claims and Contributions
This paper introduces the PCG family of random number generators and the techniques
that underlie them. In order to do so, it also articulates in detail (in Section 2) the
desirable properties of a random number generator including performance, correctness,
uniformity, and unpredictability, as well as sound mathematical grounding. It also de-
scribes some less well-known desirable features, such as k-dimensional equidistribution
and seekability (a.k.a. jump-ahead).

With those criteria articulated, the paper then

— Describes a new permutation technique, founded on the idea of permutation functions
on tuples, that can dramatically improve the output quality of a medium-quality
random number generator while preserving important qualities such as uniformity.
Although in this context the technique is applied to improving a random number
generator, it has broader applications, including hashing.

— Applies that technique to the specific case of a base generator with weak statistical
properties but other desirable ones (specifically, a linear congruential generator), and
enumerates some members of the PCG family, including several that are simultane-
ously extremely fast, extremely statistically good, and extremely space efficient.

— Applies the technique in such a way that permutations may be made essentially unin-
vertable, offering far better cryptographic security than most mainstream generators
(which offer none at all).

— Provides a low-cost period-extension technique, founded on the same ideas, that allows
huge periods and k-dimensional equidistribution for arbitrary k.

The name for the family, PCG, stands for permuted congruential generator, combining
both concepts that underly the generation scheme, namely permutation functions on
tuples and a base linear congruential generator.

But in addition to describing the PCG family, it is also necessary to appraise its
performance. To further that goal, the paper

— Develops a model for the performance of an ideal uniform random number generator
with b bits of state, including the notion of the point at which such a generator becomes
overtaxed and the constraints of uniformity make it unable to deliver truly random
behavior. (The presentation includes a generalized solution to the birthday problem
which may be useful in other contexts.)

— Using information about the TestU01 suite and the above model, determines an
approximation of the point at which any uniform generator, even an ideal one, could
be expected to fail TestU01’s statistical tests.

— Draws on the work of L’Ecuyer & Simard [2007] to articulate a powerful way to quan-
titatively compare the statistical performance of different random number generation
schemes capturing the concept of headroom to pass more stringent tests in the future.

— Uses the above statistical-performance comparison scheme, as well as time and space
performance, to contrast PCG generators with existing ones.2

2 Although I have included the most widely used and best performing existing generators, it would not be
practical for me to contrast all prior work. Even the generators I do include are not all discussed in every
section.
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It also reviews some of the well-known (and less well-known) properties of linear
congruential generators, both their flaws and some of their highly desirable properties.

2. DESIRABLE PROPERTIES
In this section, we will examine some of the properties that users of random number
generators might reasonably hope for, namely, good statistical properties, good mathe-
matical foundations, lack of predictability, cryptographic security, good time and space
performance, small code size, multiple independent streams, a sufficiently long period,
k-dimensional equidistribution, and a power-of-two modulus. In each case we’ll examine
what that property is, why it matters, and how well a representative selection of random
number generators achieve each goal.

Although not all users require all these properties, all other things being equal, the
more of these properties a random number generator can provide, the better. The PCG
family, which we will discuss in subsequent sections, will provide them all.

2.1. Statistical Qualities
Perhaps the most obvious property a random number generator should satisfy is that
it should “be random”, but delineating exactly what this most fundamental property
means is tricky [L’Ecuyer 2012], given that pseudorandom number generation typically
uses deterministic algorithms. Generally speaking, we usually interpret this property
to mean that a random number generator should conform to statistical expectations
regarding random systems. These properties can be explored both mathematically and
experimentally.

Mathematical properties can allow us to speak with authority about the behavior of a
generator without needing to run it. Statistical properties that aren’t easily determined
through mathematical reasoning can be tested by experiment, using the mathematics of
random systems to define expected behavior. In the next two subsections, we’ll examine
each of these properties.

2.1.1. Theory: Period & Uniformity. The mathematical characteristics of a random number
generator matter a good deal, because they directly relate to the confidence we can
have in it. Various authors [L’Ecuyer 2012; L’Ecuyer and Simard 2007; Knuth 1997]
have (rightly!) admonished would-be inventors of new random number generators not
to simply assemble an arbitrary collection of software gizmos in an unprincipled way
and hope for the best, because doing so risks the later discovery that the generator has
systemic bias or is broken in some other way.

The most fundamental mathematical concept underlying pseudorandom number
generation is that of period. Any deterministic algorithm executed using finite memory
must have finitely many states, and thus any random number generation algorithm
must have a fixed period, after which it will repeat (or, as a rarely used alternative,
just stop). It is usually necessary to approach period characterization mathematically
because when periods become large, empirical verification becomes impractical.

The concept of uniformity builds on the notion of a fixed period. Uniformity requires
that after a generator completes a full period all outputs will have occurred the same
number of times. If a generator is uniform, we are assured that over the long term, it
lacks bias.

Mathematical reasoning can allow us to make determinations about the uniformity
of a random number generator without ever needing to see its implementation or run
it. For example, let us consider a case where we can show that a generator must lack
uniformity in its output. Consider a generator with b bits of state, but where one
of the 2b possible states is never used, (perhaps because the implementation must
avoid an all-bits-are-zero state). The missing state would leave the generator with a
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period of 2b −1. By the pigeonhole principle, we can immediately know that it cannot
uniformly output 2b unique b-bit values. Moreover, if we desire k-bit values (where
k < b), there will still be a size mismatch to overcome. (This issue arises in practice with
linear-feedback shift-register generators [Tausworthe 1965]—the foundation for a large
class of generators—limiting their use at small bit sizes unless additional remediation
of some kind is performed.)

2.1.2. Practice: Empirical Testing, and Preexisting Generators. The saying “In theory, there
is no difference between theory and practice. But, in practice, there is.” certainly
applies to random number generation.3 The insights provided by mathematical analysis,
while immensely valuable, are insufficient to verify the performance of a random
number generator—current analytical techniques can reveal flaws, but they cannot
fully characterize the required properties. Empirical testing is required, using tests
that are themselves founded on a mathematical understanding of the behavior of
random systems. In practice, empirical tests have felled random number generators
with impressive mathematical credentials [L’Ecuyer and Simard 2007].

In 2007, L’Ecuyer & Simard [2007] made a very significant contribution to the world
of random-number–generator testing when they created the TestU01 statistical test
suite. Other suites, such as Diehard [Marsaglia 1995], had existed previously, but
TestU01 (which included a large number of previously independently published tests,
and applied them at scale) vastly increased the scope and thoroughness of the testing
process. L’Ecuyer & Simard used their tests to review existing generators (something
we will reprise in a much more abbreviated way momentarily), and the results were
sobering for the field, because many well respected generators did not pass.

Test suites such as TestU01 work by performing some statistically well understood
task using a candidate generator and then checking the plausibility of the results.
Much like experiments in other fields of science, these results typically produce a
p-value, but whereas scientists usually desire results where the null hypothesis—that
the observations were merely due to chance—is ruled out, we desire the opposite, a
result confirming that the observed behavior is consistent with chance.

Back in Section 1, we saw (in Figure 1) how TestU01’s SmallCrush test battery revealed
flaws in a number of well-used generators in mere seconds; now we will continue to
illustrate the profound impact of TestU01. Figure 2 shows the number of test failures
running the Crush and BigCrush batteries on a number additional generators. (L’Ecuyer
& Simard [2007] and others have considered many more, my intent here is just to
provide the reader with a glimpse of the landscape.) Following the advice of Vigna
[2014a], the counts reflect failures for the generators both used normally and with their
bits reversed; 64-bit generators have both their high 32 and low 32 bits tested.

Crush usually takes about an hour to run, whereas BigCrush takes about six hours.
Interestingly, these intensive batteries include some tests that can be run quickly at
small sizes, but were excluded from SmallCrush, presumably to keep the number of
tests performed small. In particular, as Figure 1(b) showed, the “linear complexity” test
[Carter 1989; Erdmann 1992] can actually find nonrandom behavior in the Mersenne
Twister (a.k.a., mt19937) [Matsumoto and Nishimura 1998], Wellrng512a [Panneton et al.
2006], Taus88 [L’Ecuyer 1996], LFSR258 [L’Ecuyer 1999c], Ecuyer1988 [L’Ecuyer 1988],
and all sizes of the unaugmented XorShift [Marsaglia 2003] generators in less than five
seconds, using fewer than 75,000 generated numbers—sometimes many fewer. All of
these generators were created by renowned figures in the world of random number
generation, appeared in well-respected peer-reviewed venues, and all had impressive

3 Although similar sentiments have been uttered by many, this variant of the saying is usually attributed to
Jan L.A. van de Snepscheut.
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Fig. 2: Combined test failures for Crush and BigCrush from TestU01 for a number of
common generators. Zero failures are desired. Many well-respected generators fail.
Despite their flaws, LCGs actually pass at larger bit sizes.

mathematical credentials, yet they cannot withstand five seconds of empirical scrutiny
with TestU01. Quite unsettling!

Also of note, RanQ1 [Press et al. 2007] and XorShift* 64/32 are essentially the exact same
generator, yet the former fails the test suite and the latter passes. The difference is that
the former markets itself as a 64-bit generator and fails because its low-order bits are
weak, whereas the latter only returns the top 32 bits. The method that underlies this
generator is notable because it follows a similar strategy to the one I will advocate in
this paper: it uses a generator with known weaknesses (XorShift), and then applies an
improvement step to the numbers it generates.

Finally, on the far right we have three different sizes of linear congruential generator
[Lehmer 1951] with a power-of-two modulus, using constants suggested by L’Ecuyer
[1999b]. Here we discover something that may surprise some readers: even though
linear congruential generators were strongly represented in the very poor generators
we saw in Figure 1, they actually can do well in empirical tests, provided that we give
them enough state bits. Note that this property is not a foregone conclusion for any
generator; in particular, generators that fail the “linear complexity” test appear to fail
it at all bit sizes. Linear congruential generators are not without serious statistical
issues (which we will examine in Section 4), but if you began reading this paper with
the simplistic belief that “linear congruential generators are bad”, perhaps that belief
is starting to be eroded.

Let’s review where we stand at this point. Only a small number of generators survive
empirical testing, and the generators that are most widely used all fail. But thus far,
we have only articulated one dimension of the desirable properties of a random number
generator, and there are several more to cover.

2.2. Predicability, Repeatability, and Security
Another “natural” property a reasonable person might expect from a source of random
numbers is a lack of obvious predictability. A die would hardly seem random if, when
I’ve rolled a five, a six, and a three, you can tell me that my next roll will be a one.

Yet because the algorithms that we are concerned with are deterministic, their be-
havior is governed by their inputs, thus they will produce the same stream of “random”
numbers from the same initial conditions—we might therefore say that they are only
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random to an observer unaware of those initial conditions or unaware of how the algo-
rithm has iterated its state since that point. This deterministic behavior is valuable in
a number of fields, as it makes experiments reproducible. As a result, the parameters
that set the initial state of the generator are usually known as the seed. If we want
reproducible results we should pick an arbitrary seed and remember it to reproduce the
same random sequence later, whereas if we want results that cannot be easily repro-
duced, we should select the seed in some inscrutable (and, ideally, nondeterministic)
way, and keep it secret.

Knowing the seed, we can predict the output, but for many generators even without
the seed it is possible to infer the current state of the generator from its output. This
property is trivially true for any generator where its output is its entire internal
state—a strategy used by a number of simple random number generators. For some
other generators, such as the Mersenne Twister [Matsumoto and Nishimura 1998], we
have to go to a little more trouble and invert its tempering function (which is a bijection;
see Section 5), but nevertheless after only 624 outputs, we will have captured its entire
internal state.

Predictability has security consequences, because it allows a variety of possible
attacks, including denial of service attacks [Crosby and Wallach 2003]. If the generator
is invertible, once we know its internal state, we can also run it backwards to discover
the random numbers it generated in the past, potentially leading to severe security
compromises [Goldberg and Wagner 1996; Gutterman and Malkhi 2005]. In contrast,
cryptographically secure generators are not invertable. The only cryptographically
secure generator in our sampling is Arc4Random from OpenBSD (which is equivalent to
the trade-secret RC4 algorithm from RSA Security), although other, more-recent secure
generators perform similarly (see Section 9). While security-related applications should
use a secure generator, because we cannot always know the future contexts in which
our code will be used, it seems wise for all applications to avoid generators that make
discovering their entire internal state completely trivial.

One might wonder why more generators don’t routinely keep more of their internal
state to themselves. One answer is speed—outputting half as many bits could be seen
as halving their speed.

2.3. Speed
Time performance is important for two reasons. If an algorithm makes heavy use
of a random number generator, obviously its time performance will depend on the
performance of its generator. Similarly, programmers must often choose between a
randomized algorithm or a nonrandomized algorithm, and in those situations generator
performance can influence their choice. For these reasons, we desire generators that
are fast.

Figure 3 shows the time performance of the generators we considered in previous
sections running an application that makes heavy demands on its random number
generator—SmallCrush from the TestU01 suite [L’Ecuyer and Simard 2007].4 The lower
part of the bars represents the amount of time spent performing statistical checks and
stays essentially constant regardless of the generator being tested; the upper part of the
bar is the time spent in generator being tested. To facilitate comparison with Figure 2,
the generators are listed in the same order, but to make the comparison easier the lower
part of each bar is shaded differently depending on whether that generator passes or
fails BigCrush—if you’re viewing the graph in color, the ones that pass are shaded green.

4 Full details of test setup and methodology are given in Section 10.
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Fig. 3: Time performance of different generators running SmallCrush. Only a few of the
generators that pass BigCrush are fast. The shaded lower parts of the graph represent
the fixed overheads of the test suite—the shading also highlights the seven generators
that pass BigCrush (as a reminder).

Many of the generators that pass BigCrush are slow, but there are some generators
that have relatively good time performance while giving acceptable statistical perfor-
mance. In particular, XorShift* 64/32 performs well,5 but perhaps some readers are again
surprised at the performance of linear congruential generators. LCG 96/32 is the fastest
generator that passes all tests (if we needed 64 bits of randomness, LCG 128/64 would
be the winner, but this application doesn’t need 64 bits, so generating them is thus a
waste of time). Also, although it is statistically very weak, the king of speed is LCG 32,
running considerably faster than any of the other generators (240 times faster than the
slowest generator, RanLux48).

Readers with lingering concerns about linear congruential generators might be
pleased to know that there is a reason why we might prefer XorShift* 64/32 over LCG
96/32—it requires less space, which is our next topic for discussion.

2.4. Space, Period, and Output Range
Although most generator implementations require a constant amount of memory to
store their state, the size of that constant matters. If an algorithm uses its own local
or embedded random number generator, the space used to represent the state of the
generator will contribute to the space overheads of the algorithm. Space usage also
influences whether it seems wise to use several separate generators at once.

In addition, space usage can have an impact on speed. If the entire state of a random
number generator can be represented in a single processor register, we may reason-
ably expect it to offer performance advantages compared to a generator that requires
hundreds or thousands of bytes of memory to represent its state.

Figure 4 shows the space usage our sampling of preexisting random number genera-
tors; notice how widely different they are in how much space each uses (especially given
the log scale!), and how little correlation there is between generator size and empirical
performance (once again, the seven generators that pass TestU01’s BigCrush battery are
shaded differently (in green if you’re viewing the graph in color).

5 There are other XorShift-based generators that perform similarly [Vigna 2014a; 2014b], but XorShift* 64/32
works as an acceptable placeholder for them. These other generators are discussed briefly in Section 9.
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Fig. 4: Space usage of different generators. As with Figure 3, the seven generators that
pass statistic tests are shaded differently, but here the group is divided in two—four
generators that pass TestU01 but have some disuniformity when used as 32-bit genera-
tors are shaded differently. Only a few of the generators that pass BigCrush are modestly
sized.

KnuthB [Knuth 1981; Bays and Durham 1976], one of the algorithms mandated
by the C++11 standard library, taken from the previous edition of Knuth’s Art of
Computer Programming (but removed from the current edition [1997]) is particularly
disappointing; we had already seen that it is slow, and it fails many statistical tests,
but now we see that it is also huge.

In contrast, you may now feel a little more charitable to Hellekalek1995 [Hellekalek
1995], an inversive generator; perhaps it is unreasonable to expect it to perform well in
Crush or BigCrush with only 32 bits of state? Perhaps we ought to be delighted that it
actually passed SmallCrush? We will address this question in Section 3.2.

2.4.1. The Effect of Period on Output Range and Uniformity. Although a generator with b
bits of state can represent 2b distinct states for a period of 2b, some generators have
fewer distinct states and a smaller period. For example, XorShift and XorShift* (and other
generators, such as the Mersenne Twister, that can be seen as primarily employing a
linear-feedback shift register) have a period of 2b −1, and likewise generators based on
arithmetic modulo a large prime will also have a non–power-of-two period. In Figure 4,
Ran and the rightmost two LCG generators are the only ones that both pass BigCrush
and have a power-of-two output range (they are thus shaded slightly differently from
the other generators that pass this battery).

A power-of-two period (or a period divisible by a suitable power of two) is useful
because it makes it trivial to have a uniform power-of-two output range. In practice,
many applications need a random stream of x-bit values, for some x, and thus an output
range of 2r, where r ≥ x, is highly desirable; r = 32 and r = 64 are particularly useful.

A non–power-of-two output range or period can add challenges. For example,
MRG32k3a [L’Ecuyer 1999a], a generator with some positive properties (good statis-
tical performance and long period) has an output modulus of 232 − 209, making it
ill-suited for generating 32-bit integers—209 values will be never produced. Although
unfortunate, such issues need not be a fatal flaw. There are a variety of fixes, including
throwing away output or adding additional generators, but both techniques require
additional time, space, or both. In cases where the output range is satisfactory and the
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only issue is the generator’s period, a common strategy is to have b À r and the dismiss
the disuniformity as “inconsequential”.

A similar dismissal approach applies to Arc4Random, which has 256!×2562 ≈ 21700

possible internal states, but has a period that varies depending on its initialization.
Mister & Tavares [1999] discuss the period of Arc4Random’s underlying RC4 algorithm
in depth, and also claim that it exhibits bias, a nonuniformity claim confirmed by Basu
et al. [2008], although no bias is detected by TestU01.

2.4.2. The Necessity of a “Large Enough” State Space and Period. If the period of a generator
is too short, it could repeat itself while in use, which is undesirable. A larger state
allows for a longer period because it allows more distinct states to be represented, but
we quickly reach a point of diminishing returns. For example, given a choice between a
generator with a period of 2128 and one with 2256, we might do well to realize that if we
had a trillion computers each examining one number per nanosecond, it would require
more than ten billion years to mostly explore the period of the 2128 generator. (Even a
period as “small” as 256 would take a single CPU core more than two years to iterate
through at one number per nanosecond.)

Long periods are sometimes advocated to support multiple random-number streams,
a property we will address separately in Section 2.5.

2.4.3. The Importance of Code Size. Beyond the space used to represent the state of the
generator there is also the space required for its code. Again, this space will be a
constant, but the amount of space used can influence the speed of program execution by
influencing cache usage and opportunities for function inlining.

Also, from a very practical perspective, the longer the code, the more likely it is to
contain an implementation error. (From personal experience, I can say that implemen-
tation errors in a random number generator are challenging because they can be subtle,
causing a drop in overall quality of the generator without entirely breaking it.)

2.4.4. A Summary of Size Issues. Thus, we desire a generator that uses enough space to
provide a reasonable period for whatever application have in mind. Beyond that it is
preferable to use as little additional space as possible, both for data and for code.

2.5. Seekability, Streams, and k -Dimensional Equidistribution
Let’s turn to a few remaining properties that are useful for some applications: seekability,
multiple streams, and k-dimensional equidistribution.

2.5.1. Seekability. Sometimes it is convenient if we can easily “jump ahead” an arbitrary
k in the random-number sequence. For example, suppose we have a large simulation
with two phases, where each phase requires 236 random numbers. Wishing to be able
to reproduce the results, we note the initial seed. After running the first phase, we
discover that a mistake was made in the setup for the second part. It would be nice if
we could rerun the second part without needing to rerun the first, but doing so requires
that we advance the generator 236 steps. We would thus prefer to be able to advance
the generator k steps without it taking O(k) time.

We say that a generator that provides a fast jump-ahead-k operation is seekable.
Because generators are cyclic, if you jump ahead far enough you end up going around
again, so we can also use jump-ahead to jump backwards.

Thanks to their mathematical foundations, most of the random number generators
we’ve discussed actually are seekable, typically in O(logk) time. The papers that describe
them do not always explicitly state how to do so, nor do their standard implementations
always provide the feature, however—we will see an example of how seekability can be
provided in Section 4.3.1.
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In contrast, many cryptographically secure random number generators are not seek-
able (over the long term) by design—we don’t want people to be able to use a backward
jump to discover numbers that they produced in the past. (Although a seekable genera-
tor can also prevent backward jumps by explicitly obliterating its state once its task is
complete.)

2.5.2. Multiple Streams. If we wish to use multiple instances of a random number gen-
erator there is a potential hazard: unintended correlation between their outputs. For
example, if we accidentally allow them to have the same internal state (perhaps we
foolishly seeded both with the current time in seconds!), they will output the exact same
numbers, which will hardly seem random.

One approach to providing streams to is demand a larger period (and thus larger
state space) and then segment that period into areas designated for different streams.
But, as we will see in Section 4.3, some generators can provide multiple streams at
essentially no cost, without increasing the state space of the generator.

2.5.3. k-Dimensional Equidistribution, Monkeys, and Shakespeare. Another common use case
for a random number generator is to provide points in a k-dimensional space, for some
k. In the same way that we would like to avoid bias in the individual numbers a
generator produces, we should also desire to avoid bias in the pairs (or triples, etc.) that
it produces.

Many users are happy to know that a generator is merely well distributed across
k dimensions but some users would prefer a much stronger property analogous to
uniformity: that over the full period of the generator, every possible k-tuple will occur,
and it will occur the same number of times.

An example from popular culture highlights this concept. There is a saying, popu-
larized by Douglas Adams [1979] amongst others, that if you had an infinite number
of monkeys typing on an infinite number of typewriters, they would produce all the
great works of literature (and an inconceivable amount of dreck, too). We can cast that
scenario into the world of random number generation. Suppose we have a generator that
outputs 32-bit values (i.e., four bytes), and we grab its output in chunks of 16384 values
at once. Each chunk will thus be 64 KB in size (which is 219 bits). If we demand that the
generator be 16384-dimensionally equidistributed, we can know that all possible 64 KB
sequences of data must show up eventually over the full period of the generator, which
must be at least 2219

. Within that immensely huge collection of outputs lies every valid
64 KB zip file, some of which will contain great literature such as Hamlet. Thus, to
make the saying more accurate, you don’t need an infinite number of monkeys (k-tuples)
to produce the works of Shakespeare, 2219

is ample.
An argument for k-dimensional equidistribution (and uniformity) goes like this:

suppose you went and bought a lottery ticket every week, how would you feel if you
discovered that the clerk at the store was handing you a fake ticket and pocketing the
money because, at 259 million to one, you were never going to win anyway. You might,
rightly, feel cheated. Thus as unlikely as any particular k-tuple might be, we ought to
have a real chance, however remote, of producing it.

An argument against providing k-dimensional equidistribution (for large k) is that
infinitesimal probabilities aren’t worth worrying about. You probably aren’t going to
win the lottery, and your monkeys won’t write Shakespeare. At least not without our
rigging the game, something we’ll discuss how to do in Sections 4.3.3 and 4.3.4.

2.6. Summary
We’ve now seen quite a litany of desirable properties, and assessed a number of popular,
historically significant, and well regarded generators against those properties. Although
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many of the generators have their niche—sometimes a sizable one—none offer all the
properties we might reasonably desire.

One of the best performing was XorShift* 64/32, which adds a simple multiplicative
improving step to the rather poor performing XorShift 64/32 generator.

But if you began reading the section with the belief that “linear congruential genera-
tors are bad” (a fairly widely-held belief amongst people who know a little about random
number generation), you may have been surprised by how well they performed. We’ve
seen that they are fast, fairly space efficient, and at larger sizes even make it through
statistical tests that take down other purportedly better generators. And that’s without
an improving step. We will discuss such a step in Section 5, but before we develop better
generators, we need to develop better techniques for comparing generators that pass
statistical tests.

3. QUANTIFYING STATISTICAL PERFORMANCE
In the previous section we saw the vital importance of empirical testing, and how
the TestU01 suite [L’Ecuyer and Simard 2007] had revealed statistical flaws in many
previously well-respected generators. But although failing statistical tests can be a
serious blow, we are left with the question of what we have learned when a generator
passes a test battery. For example, if two generators A and B both pass TestU01’s
BigCrush battery, we might ask ourselves whether they are both equally good? If that
were the case, it would mean that the linear congruential generators we saw passing
BigCrush in Figure 2 were “just as statistically good” as any other generator that passes
BigCrush, a state of affairs that would deeply trouble some readers.

This section presents a way to go beyond mere pass/fail characterization to get a
quantitative measure of how good the statistical performance of a random number
generator is. The key observation is that as we limit the amount of state a random
number generator has, we make it harder for it to perform well. This property doesn’t
just apply to some generators, as we shall see, it applies to even the most ideal uniform
generator (as an absurd example, no generator, no matter how ideal, could perform
well generating numbers with a single bit of state). Thus one way to determine the
“statistical goodness” of a generation scheme is to reduce the size of its state to the
point where it fails the test(s), and observe how close its pattern of failure is to the
pattern we might expect from an ideal generator. In this section, we will develop the
tools necessary to perform such an analysis.

3.1. Ideal Generators with Finite State Must Eventually Fail Statistical Tests
In Section 2.1.1, we introduced the notion of uniformity as a property we can and should
demand of a deterministic random-number generator with finite state. This property
requires that after a full period, all outputs will have occurred the same number of
times. Uniformity is a generally desirable property because it can rule out certain
kinds of bias, but it has some interesting ramifications—in some ways it requires a
random number generator, even a theoretically ideal one, to be less random than it
might otherwise be. We will see how uniformity (and the fixed-period property that is a
prerequisite) eventually requires all uniform generators to fail reasonable statistical
tests.

Let us consider a uniform generator with b bits of state and 2b period that produces
r-bit random numbers.6 Uniformity requires that by the time we have iterated through
all 2b states, we must have produced each of the 2r possible outputs exactly 2b−r

6 In our discussion, we’ll focus on b-bit generators where the size of the output range is 2r , where r ≤ b, but
the arguments also apply to arbitrary-sized output ranges.
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Fig. 5: Even an ideal uniform generator has limits: if overtaxed it deviates from true
random behavior.

times, and that b ≥ r. For example, if we ask a uniform generator with 32-bits of state
to produce 32-bit random numbers, it can only produce each number exactly once
(via the pigeonhole principle), but in a stream of truly random numbers, numbers
can repeat—rolling a die and getting a six doesn’t diminish your chance of getting a
six on the next roll. A classical statistical problem, the birthday problem, models the
probability of repeats.

In the birthday problem, we want to know how many people we need to have present
for two people to share a birthday (assuming 365 possible birthdays, each with a 1 in
365 chance of occurring for a particular person). Although you may realize immediately
that we won’t need to see 365 people, many people are surprised at how few are
required—only 23 for a 50% chance (and 70 for a 99.9% chance). Specifically, after
seeing only 23 people, there will obviously be at least 365−23= 342 birthdays that we
have not seen at all, but it is also likely that two people will share a birthday because
the probability that all 23 people will avoid sharing a birthday is

1×
(
1− 1

365

)
×

(
1− 2

365

)
×·· ·×

(
1− 22

365

)
,

which works out to be approximately 0.49 (i.e., 49%).
Figure 5(a) applies the same idea to our random-number–generation example, so

instead of 365 possible birthdays, we have 232 possible 32-bit integers (in general, 2r

possible r-bit integers). The figure shows the situation after we have produced a mere
216 random integers, 0.0015% of the period. The column for “0 appearances” is the
number of 32-bit integers that haven’t shown up at all. The column for “1 appearance”
counts the number of 32-bit integers we’ve seen just once. And finally, “2 appearances”
counts the number of 32-bit integers that we’ve seen occur twice—it is this column that
is forced to be zero for our ideal generator (because every integer can occur only once),
even though we would expect to have seen at least one 32-bit integer repeat itself by
now.

The problem is that with only 32 bits of state, we could only output each 32-bit integer
once. We could instead output some integers twice and some not at all but that would
be biased. To allow numbers to repeat, we need more bits of state than bits of output.
We will consider that case next.
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Suppose we decide instead to have r = b/2—in our running example, that will have us
generating 16-bit integers. Each number will appear 2b−r times over the full period of
the generator, so in our example of a generator with 32 bits of state, each 16-bit integer
will show up 216 times (i.e., 65536 times). You might think that we now have “birthday
issues” taken care of, with each 16-bit integer being able to be repeated 65536 times,
and it’s true that we won’t have problems early on, but we aren’t out of the woods yet.
Let’s see why.

One way to envisage this situation is to imagine that inside the generator there is
a bucket for each 16-bit integer it can output. Let’s zoom in on just one, the bucket
of sevens. Initially, the generator has 65536 sevens in the bucket, but every time it
generates a seven as its output, it uses one up. At some point, it will run out of them
entirely and not be able to output seven any more. In fact, by the time the generator
reaches the very last output in its period, all the buckets except one will be empty and
it will have no choice whatsoever about what to output. And that is not random at all!
But that is the condition imposed by uniformity, which insists that when we complete
the period every number has been output exactly 65536 times (to avoid bias).

Figure 5(b) characterizes our example generator when we are 99.6% of the way
through its period (specifically, we have only 224 outputs left before we have produced
all 232 outputs). At this point, each 16-bit integer will have been output 65280 times on
average (which is (232 −224)/216), but obviously there will be some random variation—
some integers have been produced more, some less. In fact, the variation matches
a Poisson distribution, which is where the curve of the graph comes from (on a log
scale), and thus the standard deviation is approximately 28. If we had a true source
of randomness (unconstrained by uniformity and amount of state) we ought to have
seen quite a few of the 16-bit integers more than 65536 (i.e., 216) times—that is the
blue/lighter part shown to the right of 216 in the graph, which is the only x-axis label
you need to pay attention to (but if you wonder why the x-axis doesn’t start at zero,
the graph is centered around 65280, the average, and goes four standard deviations to
either side). The take-away from this graph is exactly the same as from the previous
paragraph—as our uniform generator nears the end of its period, it stops being able
to be properly random. And just like Figure 5(a), it is also an instance of a classical
problem in statistics—this time it is the generalized birthday problem.

Although exact solutions to the generalized birthday problem exist [McKinney 1966],
for simplicity we can use elementary statistics to model and approximate the solution.
Let x be the expected number of random integers that occur more than 2b−r times
(i.e., the area under the blue/lighter part of the graph in Figure 5(b)). Using a Poisson
approximation, we have

x ≈ 2rP(v > 2b−r | v ∼Poisson(n/2r))= 2r(1−Q(2b−r,n/2r)),

where Q is the regularized gamma function. Note that x represents the expected number
of events that cannot occur with a b-bit generator, so we desire a measure of how likely
it is that we should have seen such an event by now—if it is quite unlikely, no one will
notice that those events aren’t there. Again we can use a Poisson approximation to
calculate a p-value, given x as determined above:

p ≈ P(w 6= 0 | w ∼Poisson(x))= 1− e−x.

Figure 6 shows how we can apply the above formula to gain insight into the behavior
of even the best uniform generator.7 Figure 6(a) calculates how many numbers we can

7 A small program, overtax.cpp, provided with the PCG library, solves this equation, allowing you to investigate
these relationships for yourself.
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Fig. 6: Amount of usable output for an ideal uniform generator. To avoid being overtaxed
very early in its period, a generator needs several more bits of state than it has bits of
output.

generate before failing the birthday test with a 32-bit generator for different numbers
of output bits (r), whereas Figure 6(b) assumes we desire 32 bits and shows what
percentage of the period of the generator we can use for different state sizes (b bits).
The figures show values for different p-values, including p = 2−b, which has a certain
appeal (with a period of 2b, it’s nice to be able to observe birthday problem events that
occur with a probability of 1 in 2b). This choice has another benefit: the p = 2−b columns
of Figure 6(b) remain the same for other values of r—just start the x-axis labels at r
instead of 32.8

Summary. From this discussion, we have shown that even an ideal uniform generator
with finite state has a statistical test it will fail, and characterized exactly when it will
do so. In essence, a generator “runs out of gas” as we push it close to its period (or much
sooner if it has few bits of state and we insist on it outputting all of it). We call this
situation a generator being overtaxed. We can avoid a generator being overtaxed two
ways; ask for fewer numbers from it, or lengthen its period by adding more bits of state.

3.2. An Approximation for Limits on TestU01 Performance
We can use the concepts from the preceding section to approximate the number of
failures we would expect running statistical tests (such as TestU01’s test batteries) on
an ideal uniform b-bit generator. If a test would overtax the generator by using too
much of its period, we can presume it would fail the test because the generator has
been taken into a zone where its ability to appear random is severely compromised. We
will focus on TestU01.

The TestU01 suite is well documented, so we can know for each test in its batteries
how many bits it uses from each random number, and we can measure exactly how
many random numbers it needs. These two pieces of information are exactly what we
need to determine whether or not it might overtax an ideal generator with a given
amount of state.

Using information about TestU01 and the generalized–birthday-problem approxi-
mation from Section 3.1, I calculated, for each test in TestU01, the point at which an

8 When b = r and p = 2−b, we can use about a hundred millionth of the period of the generator. That’s a
problem when b = 32 or b = 64, but when b = 128, a useable period of 2101.5 is not likely to be a problem!
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ideal random number generator would have a birthday-problem p-value worse than 1
in 1000, and thereby determined the minimum number of state bits required to pass
each test in the battery. This estimate is conservative because in practice, depending on
the exact characteristics of the test, an overtaxed generator might pass the test anyway,
either by chance or because the test is insensitive to birthday-problem issues.

This information indicates that an ideal generator can reasonably fail SmallCrush
when b < 32, fail Crush when b < 35, and fail BigCrush when b < 36. Thus, in Section 2.1.2,
I had indeed put Hellekalek1995 in a contest it couldn’t hope to win—and its success in
passing SmallCrush with only 32 bits of state was an achievement to be proud of.

In addition, we can now surmise that in theory an ideal generator could pass BigCrush
using only 36 bits of state, but none of the generators we saw in Section 2.1.2 came
close to this performance.

3.3. A Space-Based Metric for Generator Comparison
As we saw in Section 3.1, the point at which ideal generators start to fail statistical tests
is closely connected to their period and how many bits of state they have. Empirical
evidence suggests the same is true for real-world generators, as we will see momentarily.
If a generator is failing statistical tests, giving it more state might allow it to pass, and,
similarly, if it is passing the tests, forcing it to get by with fewer state bits can make it
fail. This notion gives us a metric for determining whether one generator is better than
another—give each one enough bits to pass statistical tests (and discard any that can’t
pass at any bit size), and then “put the screws on them”, testing them at smaller and
smaller state sizes to find the point at which they fail, as they eventually must.

If generation algorithm A passes a statistical test using b bits of state, and generation
algorithm B requires at least b+k bits of state, A is better—because if both are used in
practice at the same size, A will have k bits more headroom. For example, suppose we
will devote 64 bits to random number generation and we are trying to decide between
two generators. If we have a test battery that A can pass with 40 bits of state, but B
needs 63 bits to pass, then A has 24 bits more than it needs to pass our test, whereas
algorithm B has only one additional bit. With only one bit of headroom, we can be
reasonably concerned that if we gave B a slightly larger test (e.g., about double the
size), it might not pass. Whereas we would hope that A would require a much larger
test (about 224 times larger) before it would be likely to fail.

This reasoning assumes that real-world generators behave analogously to ideal ones
(e.g., needing 50% more state than an ideal generator, but otherwise being overtaxed
in a similar way), but the empirical evidence given here and elsewhere [L’Ecuyer and
Simard 2007] suggests that they do behave this way. L’Ecuyer and Simard [2001]
explored birthday-test performance for a number of real-world generators, varying
the size of a single test and keeping generator-state size the same. In this paper, we
will examine the empirical performance of a small number of generators in the more
comprehensive Crush and BigCrush batteries, keeping the test the same and varying bit
size.

Figure 7 shows Crush and BigCrush performance for three random-number–generation
algorithms that are straightforward to run at different sizes: LCG, XorShift, and XorShift*.
This graph supports some intuitions that may have been building since Section 2.1.2.
Specifically, LCG is quite poor at small bit sizes, much worse than XorShift, but it improves
fairly quickly—at 88 bits of state LCG passes BigCrush. In contrast, XorShift begins from a
better starting point but is never able to fully overcome its weaknesses as we add more
bits of state. XorShift* outperforms both—a 40-bit XorShift* generator can pass BigCrush.
Thus, if we had 64 bits to devote to state, the LCG and XorShift algorithms would be
terrible choices, but XorShift* would be a good one. It will pass BigCrush with 24 bits of
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Fig. 7: BigCrush + Crush test failures at different bit sizes (32-bit output).

headroom—in other words, 24 bits more than it needs—and thus gives us reason to
hope that it could withstand much more intense testing (although there is always the
risk that an entirely new test could be developed that checks a previously untested
statistical property and reveals a flaw).

XorShift* is a small change to XorShift—it permutes XorShift output using a multiplicative
improvement step (discussed in more detail in Section 5.5.2). This simple change
pushes it very close to the performance of an ideal generator. In fact, you may notice
that at some points on the graph it actually exceeds our model of ideal performance.
Recall that the theoretical model assumes that the tests TestU01 applies will detect
all deviations from true randomness, but in practice some tests may be oblivious to
birthday-problem–related issues.

XorShift* would even be highly usable at 48 bits. Or at least it would be if its “minor”
nonuniformity from a non–power-of-two period didn’t start to become a problem at small
sizes (an issue we mentioned previously in Section 2.4.1). In contrast, the statistical
performance of the LCG scheme was less stellar—in a contest between LCG and XorShift,
LCG wins, but compared to XorShift* it loses.

3.4. Summary
We now have a new concept, headroom, that quantifies statistical performance in
pass/fail empirical statistical tests. Headroom is the difference between the number
of bits of state a particular generation scheme requires to pass a given statistical test
(or test battery) and the number bits that a given instance of that scheme actually
has. Thus, a 128-bit LCG generator has 40 bits of BigCrush headroom because the LCG
scheme can pass BigCrush with 88 bits of state. We have also discovered the concept of a
theoretical limit on the minimum number of state bits that are required to pass a given
statistical test (or test battery). In the case of TestU01’s BigCrush battery, that minimum
is 36 bits. Thus, although we might be even less impressed with generators that seem
to require vastly larger state to pass BigCrush, we should not be especially impressed at
the performance of the LCG scheme because its performance is very far from ideal. On
the positive side, linear congruential generators do have other good properties, which
we will review in the next section.

4. LINEAR CONGRUENTIAL GENERATORS
Linear congruential generators are one of the oldest techniques for generating a pseu-
dorandom sequence of numbers; being first suggested by Lehmer [1951]. Despite its
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(a) A bad LCG (b) True randomness (c) A “good” LCG

Fig. 8: 16-bit LCGs versus actual randomness.

age, the technique has had both enduring popularity, as well as a certain amount of
ignominy (thanks a lot, RANDU [Knuth 1997]).

In this section, we will present the definition of LCGs and enumerate some of their
well-known (and less well known properties). We will see that LCGs have statistical
flaws, but also that they have almost all of the desirable properties that we discussed
in Section 2. Because of their positive qualities, LCGs will form a key part of the PCG
generation scheme (the “CG” in PCG).

4.1. Definition and Basic Properties
The generator uses a simple recurrence to produce random numbers:

Xn+1 = (aXn + c) mod m, n ≥ 0,

where m is the modulus (m > 0); a is the multiplier (0 ≤ a < m); c is the increment
(0≤ c < m); and X0 is the starting value, the seed (0≤ X0 < m). When c > 0 and a > 0,
we call the generator a linear congruential generator (LCG), whereas in the special case
that c = 0 and a > 0, we call it a multiplicative congruential generator (MCG), although
others often call it a Lehmer generator.

This technique has the potential to be fast given that it only requires three operations,
a multiply, an add, and a modulus operation. If m is chosen to match the machine-word
size, the modulus operation can be performed implicitly by the underlying hardware,
reducing the number of operations to two. If we use an MCG, there is no need to perform
the addition, thus allowing each step of the generator to be performed with a single
multiply. In contrast to the machines of many years ago, CPUs in widespread use today
can perform multiplies very quickly (e.g., at a throughput of one per cycle [Granlund
2012]), explaining the excellent performance we saw in Figure 3.

LCGs and MCGs are also space efficient; they only need enough space to store the
previous value of the recurrence. In the case where m = 2k (which is convenient for k-bit
machine words), the maximum period of the LCG variant is 2k whereas the maximum
period of the MCG variant is 2k−2 [Knuth 1997].

LCGs and MCGs are conceptually simple, well understood, easy to implement (pro-
vided m = 2k, making overflow a blessing, not a curse), and typically fast. Yet, as I have
alluded to several times already, in some quarters, they have a poor reputation. Let’s
consider why. . .

4.2. Visualizations, Intuition Pumps, and the Flaw in LCGs
Take a look at Figure 8. It provides a visualization of the output of a three would-be ran-
dom number generators. The one in the middle probably matches what your conception
of random noise looks like, whereas the two on either side probably do not.
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(a) 16-bit LCG (b) 17-bit LCG (c) 18-bit LCG

Fig. 9: The same LCG with different state sizes; using less of the period makes the
crystalline structure much less obvious (although it is still there).

Before we proceed further, let us discuss how they were made. The output of a
random number generator is grouped into pairs, which are then used to provide the
(x, y) coordinates to plot a point on a 28 ×28 grid. Each picture (even later ones that
seem very sparse), plots 215 points, consuming 216 random numbers. The diagram also
captures temporal properties of the generator; earlier points are rendered a lighter gray
than later ones (the first point is in 50% gray, so areas where there are no points at all
remain clearly distinguished). Although images such as these (and 3D variants) are not
new, they do not appear to have been given a short and simple name. Let’s call them
randograms.

4.2.1. Randograms as Intuition Pumps. Randograms are informal, but they can neverthe-
less be useful. You may not feel absolutely certain that Figure 8(b) is truly random, but
it is likely that you are sure that Figures 8(a) and 8(c) are emphatically not. As such,
they drive our intuitions about what is more or less random.

As with other intuitive thinking, we have to exercise caution because our intuitions
can lead us astray (e.g., seeing one LCG look bad in one context and assuming that
all LCGs are bad in all circumstances), so we should never draw conclusions based on
intuitions alone, but they nevertheless have a useful place as a tool. Much of the theory
that underlies LCGs owes its origins to these kinds of intuitions.

Before we move on to that theory, however, let’s take a moment to realize that the
intuitions we gathered from Figure 8 may have overstated the case against LCGs.
Figure 8(c), which is repeated in Figure 9(a), used the entire period of a 16-bit LCG,
something we know (from Section 3.1) to be questionable for even an ideal generator
(and LCGs are not ideal), so we might wonder what the diagrams would have looked
like with an extra bit or two of state. Figure 9(b) shows 17 bits, and you may still notice
some regularities, but they are somewhat subtle. Regularities are still there in the
output of the 18-bit generator depicted in Figure 9(c), but they are too subtle to clearly
see. We should not be surprised by this result, given what we discussed in Section 2.4
(e.g., Figure 7)—we that know LCGs perform better with more bits.

Thus we have seen that we must take care in the intuitions we form, and we should
pay attention to context; if we only see LCGs depicted with poor multipliers or using
their entire period, we may mistakenly believe they are worse than they really are.
Likewise, we should be careful about giving too much credit too quickly—even though
Figure 9(c) looks random, flaws are still there.

4.2.2. The Flaw in LCGs. Marsaglia [1968] showed that even with the most well-chosen
multiplicative constants, using an LCG to choose points in an n-dimensional space will
generate points that will lie on, at most, (n!m)1/n hyperplanes. He wrote:

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 Melissa E. O’Neill

all multiplicative congruential random number generators have a defect—a defect
that makes them unsuitable for many Monte Carlo problems and that cannot be
removed by adjusting the starting value, multiplier, or modulus. The problem lies
in the “crystalline” nature of multiplicative generators—if n-tuples (u1,u2, . . . ,un),
(u2,u3, . . . ,un+1) of uniform variates produced by the generator are viewed as points
in the unit cube of n dimensions, then all the points will be found to lie in a relatively
small number of parallel hyperplanes. Furthermore, there are many systems of
parallel hyperplanes which contain all of the points; the points are about as randomly
spaced in the unit n-cube as the atoms in a perfect crystal at absolute zero.

When m = 2k there is a further problem. The period of the bth bit of an LCG (where
bits are numbered from the right, starting at one) is 2b, thus although the period is 2k,
only the high bits are good and the lower order bits exhibit a clear repeating pattern.
For an MCG, the bottom two bits remain fixed, resulting in a period of 2k−2 and bit b
(b ≥ 2) having a period of 2b−2 [L’Ecuyer 1999b].

On the positive side, at least the flaws in LCGs are very well understood, and (as
we saw in Section 2.1.2) statistical flaws are hardly unique. For example, we saw that
linear-feedback–shift-register–based generators were brought down in statistical tests
(in mere seconds!). I would claim they fail because they have the opposite problem
to that of LCGs—instead of being too regular, I would describe them as “too lumpy”;
output for some sections of the period is decidedly improbable. Moreover, we saw in
Section 3.3 that at least sometimes statistical flaws in a generator have an easy fix (e.g.,
the multiplication step in XorShift*), so there is every reason to be hopeful.

So, for now let us set the statistical flaws to one side in the hope that we can fix them
(we’ll see how in Section 5) and turn to other properties where LCGs fare a little better.

4.3. The Good Stuff: Seekability, Multiple Streams, k -Dimensional Equidistribution
LCGs may have statistical problems, but on the positive side they can provide all of the
auxiliary properties we discussed in Section 2.5, namely seekability, multiple streams,
and k-dimensional equidistribution.

4.3.1. Seekability. Thanks to the simple linear properties of the recurrence, we can
actually jump ahead an arbitrary i steps in the random sequence using the formula

Xn+i =
(
ai Xn + c(ai −1)

a−1

)
mod m.

Brown [1994] gives an algorithm that performs this calculation quickly (specifically in
O(log i) steps), without using division, using an algorithm analogous to fast exponentia-
tion.

4.3.2. Multiple Streams. Although there are rules for the choice of constants [Hull and
Dobell 1962], if we pick a power-of-two modulus and a good multiplicative constant, the
only constraint on c for a full period generator is that c is odd and 0< c < m (or c = 0 for
an MCG). Every choice of c results in a different sequence of numbers that has none
of its pairs of successive outputs in common with another sequence. We can prove this
property as follows: Suppose we had two generators with additive constants c and d
that transitioned from x to the same value y, thus

y= ax+ c = ax+d mod m,

and the only solution to this equation is that c = d.
It’s worth noticing that in many programming languages, we can allow distinct

random number generators to have their own distinct streams at zero cost. In languages
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like C and C++, we can base the constant on the memory address of the state, whereas
in other languages (e.g., Python), every object has a unique integer id that we can use.

4.3.3. Party Tricks. The above two properties allow us to perform a silly party trick with
an LCG. Let’s assume we’re working with a 64-bit LCG. First, let us observe that

3935559000370003845×3203021881815356449+11742185885288659963
≡264 2406455411552636960

This equation captures a particular 64-bit LCG as it advances. The first number is one
of Pierre L’Ecuyer’s multiplicative constants for a good LCG [1999b], the second number
is actually the little-endian encoding of the bytes of “!Thanks,” and likewise the last
number encodes “ Pierre!”. The additive constant is contrived to make the sum work.
Thus by using a contrived constant, we can make the generator produce any pair of
two outputs we desire (provided that one is even and one is odd); I have contrived to
make it produce the bytes of “!Thanks, Pierre!”. Using seekability, we can backstep
the generator so that it will produce this output at some arbitrary point of our choosing
in the future, possibly during execution of L’Ecuyer’s test suite, TestU01 [2007].

4.3.4. Very Long Periods & k-Dimensional Equidistribution. Some generators, most notably
the Mersenne Twister [Matsumoto and Nishimura 1998], tout their long period and
k-dimensional equidistribution, so we should consider whether LCGs can provide these
properties.

First, let’s step back for a second and observe (paraphrasing L’Ecuyer [2012]) that
these properties alone are trivial to provide. They are true of a simple counter! A
counter of b bits will toil its way through every bit pattern, showing it exactly once, for
a period of 2b. I could thus set aside 1 MB of RAM, use it as a counter, and claim it as a
262144-dimensionally equidistributed generator with a period of 28388608, but no one
would be very impressed with it.

But this terrible idea does provide a clue for how to build a k-dimensionally equidis-
tributed generator out of k LCGs—treat each generator like a digit in a k-digit counter.
For this approach to work, the generator will need the concept of carry to advance
the the count of its leftward neighbor, but we can use the same approach we use with
ordinary digits—when we hit zero, we advance our neighbor.

Also, you might be concerned that while the rightmost generator/digit counts up, the
others will stay the same—we will have k-dimensional equidistribution but terrible
randomness. But adding one isn’t the only way to count. Imagine a three-digit counter,
counting from 000 to 999; we could add 001 each time, but we could instead add 111.
Observe that the sequence goes

. . . ,888,999,110,221,332,443, . . . .
In other words, we advance all the numbers each step, but we perform an additional
advance when carry occurs. In fact, it doesn’t matter how we advance the digits to the
left, so long as we break them out of lockstep.

Thus, if we wished to have a three-dimensionally equidistributed LCG generator, we
could advance all three of them by writing:

state1 = mult * state1 + inc1;
state2 = mult * state2 + inc2*(1 + (state1 == 0));
state3 = mult * state3 + inc3*(1 + (state2 == 0));

and then read out the three values in turn. We could perform the carry-advance with
an extra LCG iteration step, but because all that matters for “advancing the digit to
the left” is performing some kind of extra advance and it doesn’t matter what kind, the
code merely uses an extra increment.
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(a) 2 × 8-bit LCGs (b) 2 × 9-bit LCGs

Fig. 10: Using two tiny LCGs with two-dimensional equidistribution.

Notice that in the code above each LCG has its own additive constant to create distinct
random streams, otherwise there would be embarrassing synchronicities between their
values. It would have been more random to use distinct multipliers, too, but it isn’t as
critical.

There was nothing special about choosing three-dimensional equidistribution. We
can build a k-dimensionally equidistributed generator for any k, and if the period of
the base generators is 2b, the period of the combined generator will be 2kb. Finally,
although we think of it as producing a k-tuple, we can also think of it as producing k
values each in turn. Thus, if all we care about is having a generator with a long period,
we can use this technique to achieve that goal.

Amazingly, in some ways this scheme actually does better at being k-dimensionally
equidistributed than the Mersenne Twister does. For example, the Mersenne Twister cannot
generate the all-zeros state, but the Mersenne Twister also struggles to behave randomly
when its state is almost-all-zeros [Panneton et al. 2006]. In contrast, thanks to the
distinct additive constants, our gang of k generators will at some point arrive at an
all-zeros state, but then advance to entirely different positions and continue on their
way.

In addition, we can reprise the party trick we saw in the previous section, on a larger
scale (and this time without needing to contrive an additive constant). For example, you
could set up 214 LCGs for a total state space size of 64 KB, set all the states so that it’ll
read out a Zip file for Hamlet, and then backstep the generator s steps. Now, for s steps
it will appear entirely random, but then it will suddenly output a Zip file containing
Hamlet, and then return to more conventional random output.9

Figure 10 shows randograms drawn using two tiny LCGs following the above scheme
for equidistribution. Clearly there is blatant structure there, but we shouldn’t expect
much else for such low-quality generators. Also, in the previous diagrams, we’ve thrown
away half the bits, whereas here we’ve used them all and we are thus only halfway
through the period. Thanks to exact two-dimensional equidistribution, if we use the
complete period we’ll shade the square entirely, with each point occurring exactly once.

Even though we’ve seen that long periods and k-dimensional equidistribution are not
much of a challenge for LCGs, the structure we can see in Figure 10 reminds us that
they are statistically weak.10

9 If you want to try this trick yourself, don’t forget to allow for the possibility of carry. Odds are that it won’t
happen, but you should check.
10 In addition to the flaws of LCGs themselves, this scheme for k-dimensional equidistribution can add
additional statistical flaws due to the uniformity of the underlying generators from which it is made. We
have glossed over those issues and their remediation because they won’t be a concern for the scheme the
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4.4. Summary
Despite their flaws, LCGs have endured as one of the most widely used random-number
generation schemes, with good reason. They are fast, easy to implement, and fairly
space efficient. As we saw in Section 3.3, despite poor performance at small bit sizes,
they continue to improve as we add bits to their state, and at larger bit sizes, they
pass stringent statistical tests (provided that we discard the low-order bits), actually
outperforming many more-complex generators. And in a surprise upset, they can even
rival the Mersenne Twister at its principle claims to fame, long period and equidistribution.

Nevertheless, there is much room for improvement. From the empirical evidence
we saw in Section 3.3 (and the much more thorough treatment of L’Ecuyer & Simard
[2001], who observe that LCGs are only free of birthday-test issues if n < 16p1/3, where
n is the number of numbers used and p is the period), we can surmise that we may
observe statistical flaws in a 128-bit LCG after reading fewer than 247 numbers (which
is more than BigCrush consumes but nevertheless isn’t that many—an algorithm could
plausibly use one number per nanosecond and 247 nanoseconds is less than two days).

There are many ways to seek to improve a random number generator. One well-
explored option is to combine multiple generators, but doing so adds a time and space
penalty. In addition, for a fair comparison, we should always compare at the same
overall bit size—it doesn’t make much sense to compare a combination of four 64-bit
generators against a single LCG struggling along with 64 bits—we should compare the
combined 4×64-bit generator to a 256-bit LCG. Because of these issues, we’ll take a
different tack—rather than add more generators, we’ll improve the one we have.

5. PERMUTATION FUNCTIONS AND K -TO-1 UNIFORM FUNCTIONS
Several random number generators (e.g., XorShift*, Mersenne Twister) use a final step
to improve the output of a base generator. Instead of just outputting the generator’s
internal state as-is and trying to find a “more random” way to transition from one
internal state to another, they instead adopt a more sophisticated method to turn the the
generator’s internal state into its output. Specifically, they perform a uniform scrambling
operation, remapping the output in some way so as to enhance its randomness. The key
idea is a permutation function.

A permutation function is a bijective function (i.e., 1 to 1 and onto) where the domain,
range, and codomain are all the same. For example, f (x)= x+1 mod m is a permutation
function on Zm (i.e, integers modulo m), but we might reasonably expect that applying
such a function would do little to make a random sequence seem more random. For our
task, we desire permutation functions that scramble the output in some way.

XorShift* 64/32, for example, applies the multiplicative step of an MCG to improve
its output. It uses a 64-bit multiplicative constant recommended by L’Ecuyer [1999b].
We know that this step will act as a scrambling function because it lies at the heart
of another random number generator (in essence, we’re borrowing its trick), and we
can also reasonably hope that this step won’t somehow inject bias because MCGs are
uniform, not biased.

Interestingly, we need have no concerns about bias when applying a permutation
function to an ideal random number generator, because whatever the permutation, it
makes no difference to its statistical performance; either way, every possible output has
a 1 in m possibility of showing up (where m is the modulus).

PCG family uses (described in Section 7.1), but, generally speaking, the more bits of state the underlying
generators have, the better.
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Thus, if we have a pseudorandom number and pass its output through a permutation
function, there are three possibilities:

(1) It makes no difference, the statistical properties of the generator are unchanged
(exactly as would happen for a true source of randomness).

(2) It improves the statistical properties of the generator, masking its flaws.
(3) It worsens the statistical properties of the generator, exposing its flaws.

Unfortunately, a problem with applying permutation functions (or at least doing so
naïvely) is that we increase the chance that a user might trigger the third option, as we
shall see.

5.1. The Perils of Invertability
Suppose that, excited by the idea of permutation functions, you decide to always
improve the random number generators you use with a multiplicative step. You turn
to L’Ecuyer’s excellent paper [1999b], and without reading it closely (who has time
to read papers these days!), you grab the last 32-bit constant he lists, 204209821.
You are then surprised to discover that your “improvement” makes things worse!
The problem is that you were using XorShift* 32/32, a generator that already includes
multiplication by 747796405 as an improving step.11 Unfortunately, 204209821 is the
multiplicative inverse of 747796405 (mod 232), so you have just turned it back into the
far-worse–performing XorShift generator! Oops.

Because of their 1-to-1 nature, all permutation functions are invertible, so this issue
applies broadly. Of course, it’s much more unlikely that you’ll accidentally invert the
tempering function of the Mersenne Twister, but, as mentioned in Section 2.2, a hacker
might do so entirely deliberately.

Thankfully, there is a variation on permutation functions that makes inverting them
more difficult—k-to-1 uniform functions.

5.2. Avoiding Invertability: k -to-1 Uniform Functions
If our function is k-to-1 rather than 1-to-1 (i.e., where exactly k unique inputs map to
every available output), there are k possible inputs that could have lead to each output,
leaving anyone hoping to invert the function with k possibilities. As k gets larger, the
concept of a meaningful inverse vanishes.

Functions of this kind are widely used in computer science, usually going by the
name uniform hash functions. In fact, we could stop at this point, just use a linear
congruential generator and produce output by hashing its entire state using a high-
quality off-the-shelf hash function. But even though this strategy might work, we would
actually find performance to be mediocre (see Section 9 on related work, which discusses
this approach), and, without careful examination of the properties of the hash function,
we might not have full confidence that it was not somehow introducing bias. Thus,
instead of stopping there, we will press on, and design something specifically for the
task.

5.3. Permutation Functions on Tuples
This section contains the key idea that underlies all PCG generators (the “P” in PCG).
The idea is simple, yet powerful when applied to our task.

11 This generator, although plausible, is not a widely used generator nor mentioned elsewhere in the paper
(except implicitly as a plotted point in Figures 7 and 15). It fails statistical tests, including SmallCrush.
Normally we use XorShift* 64/32, which performs better, but that would not work for our accidental inversion
scenario—thanks to its 32-bit output, its 64-bit multiplication is not so easy to invert.
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Suppose you have two permutation functions f : A → A and g : B → B, and you would
like a permutation function on the Cartesian product of their domains, A×B → A×B.
One possible function would be

fg(a,b)= ( f (a), g(b)).

Let us call this a simple permutation function on A×B tuples because we are about to
examine another, more powerful, option. Suppose instead that rather than applying
two functions to both sides of the tuple at once, we focus all our efforts on one side, say,
the right-hand side. We set up a family of permutation functions on B, where we have
a function fa for each a ∈ A. In this case, the following function is also a permutation
function:

f∗(a,b)= (a, fa(b)).

Let us examine two arguments as to why f∗ is a permutation function on A×B. First,
we can observe that the Cartesian product marries all possible combinations of elements
of A with elements of B, thus, every element of B is passed to each of the permutation
functions in the family exactly once. Second, more practically, there is an obvious way to
invert f∗, given that a was passed through unchanged—thus we can apply the inverses
for all the functions in our family in the exact same manner.

Obviously, there was nothing special about applying f on the right-hand side; if we
had a family, l, that operates on the left-hand side, we could perform l∗(a,b)= (lb(a), b).
We can also compose multiple permutations together, whether they are simple or
family-based, and the idea extends to k-tuples because, for example, A ×B ×C is
isomorphic to (A×B)×C. Finally, because our topic of interest is a random number
generator with b bits of state, it’s worth realizing that we can break numbers in Z2b

(numbers represented with b bits) into pairs from the Cartesian product Z2k ×Z2b−k ; in
other words, using the k leftmost bits as the first member of the pair and the remaining
bits as the second.

In the context of random number generation this technique is powerful because it
allows a random number generator to apply its own randomness to itself, in a uniform
way. In particular, if a comes from a random distribution, the permutation functions in
the family f will be applied in an entirely unbiased, yet random, way. This property
is valuable in general, but it is extremely useful for linear congruential generators
where the high bits are fairly random and the low bits are not (a property we previously
discussed in Section 4.2.2).

Finally, if we drop a from the result, the function becomes a |A|-to-1 uniform function.
We will have woven together several permutation functions, selected at random, and
then removed any clue as what came from where. (Note also that, using the same
arguments we have already made, we can apply function families exactly analogously
for k-to-1 uniform functions as we do for permutation functions—if fa : B → C is a family
of k-to-1 functions for every a ∈ A, then f∗ : A×B → A×C is also a k-to-1 function.)

The application of powerful composable permutation functions is the cornerstone of
the PCG generation scheme, coupled with the technique of discarding enough informa-
tion to make the permutation impractical to invert. In principle, a PCG generator could
use a bizarre function family of entirely unrelated permutation functions, weaving
them together randomly, but in deference to both execution speed and our sanity, we
will focus on families of very closely related permutation functions.

5.4. A Gallery of Permutation Primititves
In this section, we will look at a few permutation functions (and k-to-1 uniform func-
tions) that are particularly well suited to turning the internal state of an LCG into an
output value.
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To assist our intuitions, I will provide the same “randogram” visualizations we saw
in Section 4.2; in particular, we will apply them to the pathologically bad LCG we saw
in Figure 8(a). In practice, we would not be using such a bad LCG, but the example is
nevertheless useful for developing an informal notion of what the projection performed
by the permutation is doing—if I had used a more realistic LCG such as the one from
Figure 9(c), improvement would still be occurring, but you wouldn’t be able to see it.

5.4.1. Notation. Before we get started, let’s define some notation.12

— If f and g are functions, f ◦ g is their composition.
— If 〈p, q〉 is a pair, π1〈p, q〉 = p and π2〈p, q〉 = q (i.e., the usual projection functions).
— splitt(n) :Z2b →Z2t ×Z2b−t is the bitwise partition function, making a pair from the

top t bits of n and the remaining bits of n, defined for all b.
— join〈p, q〉 :Z2t ×Z2b →Z2t+b is the bitwise join function, undoing any split, defined for

all t, b.
— If n,m ∈Z2b , n⊕m is their bitwise exclusive or, and n⊗m is multiplication mod 2b.
— If n ∈Z2b and 0< c < b, n� c is the bitwise clockwise rotation of c bits.
— If n ∈Z2b and 0< c < b, n� c ∈Z2b−c drops the lower c bits (the unsigned right shift

operator in C, >>). We could define it as π1 ◦splitb−c.
— If n ∈Z2b and 0< c < b, n� c ∈Z2b+c adds the c zero bits on the right-hand side of n

(the left shift operator in C, <<).
— If n ∈Z2b and 0< c < b, n �� c ∈Z2c keeps the upper c bits and drops the lower ones.

It’s just a convenient way to say n� (b− c).
— If n ∈Z2b and 0< c < b, n �� c ∈Z2b−c keeps the lower c bits and drops the upper ones

(usually done by masking in C). We could define it as π2 ◦splitb−c.

In all situations, we will want to permute b bits of state from the generator into r
bits of state to provide as output from the generator. Thus we will desire a 2b−r-to-1
uniform function. Let us call this function the output function.

5.4.2. Dropping Bits Using a Fixed Shift. We have already discussed one simple 2b−r-to-1
output function: dropping low-order bits. For LCGs and MCGs, the low-order bits have
a very short period so this simple transformation significantly improves their statistical
properties. In the randograms we looked at in Figures 8 and 9, we were looking at the
high 8 bits of a 16-bit generator; in the first eight images of Figure 11 we move our 8-bit
window down to see the increasing weakness of the generated output. Thus, taking the
high 8 bits seems wise.

If we were coding our toy generator (which has 16 bits of state and 8 bits of output) in
C, we would most likely write state >> 8 to drop the low 8 bits and keep the high ones,
but in more formal notation and general terms, we could say that for r result bits from
b bits of state, the 2b−r-to-1 uniform function that we’re applying is just the � function,
π1 ◦splitb.

5.4.3. Dropping Bits Using a Random Shift. Dropping the low 8 bits is a 28-to-1 uni-
form function, as are all the other bit-dropping options, which are depicted in Fig-
ure 11(a . . . h). Perhaps that gives you an idea; they could be a family, couldn’t they?
We don’t have many bits to play with, so we only have two choices, a family of two
members or a family of four. Figure 11(i) shows the result of allocating the high bit to
family-member selection, and Figure 11(j) shows the result of allocating the top two bits.
Note that the more high bits we use, the weaker the generators we will be combining. It

12 As with most papers, you can adopt the “read the paper but skip the math” approach. Everything given in
formal notation is also explained in English.
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(a) Bits 8. . . 15 (b) Bits 7. . . 14 (c) Bits 6. . . 13 (d) Bits 5. . . 12

(e) Bits 4. . . 11 (f) Bits 3. . . 10 (g) Bits 2. . . 9 (h) Bits 1. . . 8

(i) a and b, mixed (j) b . . . e, mixed

Fig. 11: Using shifts to drop bits, both fixed shifts and random ones.

might be tempting to instead build a family from a, b, c, and d instead, but that would
be cheating and we would no longer have a permutation function.

From an intuitive perspective, this transformation is clearly an improvement. We
began with a terrible LCG, and although the result clearly has some structure it
certainly seems at a gut level like it is an improvement.

Let’s take a second to describe these concepts formally. On b bits, our family of shifts
is

fc(n)= (n� c)�� r,

where r is the number of result bits we are to produce. If we use t top bits to decide on
the shift, our output function becomes π2 ◦ f∗ ◦splitt.

Now let’s see it as C code, this time for a 64-bit generator with 32 bits of output, using
a family size of eight. I’ll include the multiplication step to give us the entire code for
random number generation. I’ll write the code tersely, writing the constants directly
and allowing the machine-word size to perform truncation implicitly.

state = state * multiplier + increment;
uint32_t output = state >> (29 - (state >> 61));

That’s it. Two lines. It’s so short that it might be hard to believe (especially if you
started reading the paper in the middle looking for the good stuff—yes, I know there
are readers who do that). The first line is a standard state advance for an LCG, and
the second applies our output function, which is a 232-to-1 uniform function based on
function families. From Figure 11(j), where we applied the analogous output function to
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a pathologically bad 16-bit LCG, we have strong intuition that the transformation is an
improvement.

As you might expect for such short source code, it compiles to a handful of instructions
and executes blazingly fast (we will look at the performance of the PCG family in detail
in Section 6.1). But what about quality?

First, let’s look at things from a theory perspective. In essence we are running eight
(related) linear congruential generators, with moduli and periods between 261 and 254,
and randomly choosing between them using another LCG with period 264, but thanks
to the properties of permutation function families, we guarantee that every one of those
eight LCGs is given exactly the same number of turns, doing so in such a way as to
preserve uniformity. Even though the bits of each underlying LCG have a short period,
the high bit of the LCG, which has a 264 period, affects the shuffling, meaning that all
bits of the output have a 264 period.

Despite every bit of the output having a 264 period, we should realize that we’re
moving a window over the same generator, and thus even as we move the window, it
is possible for some flaws to still leak through. If, for example, we applied this output
function to a generator that had a tendency to sometimes output big clumps of zero bits,
wiggling a window around would do little to mask it. For LCGs, however, these issues
are likely to be less of a problem because their chief issue is too much regularity.

Empirically, we can turn to TestU01 [L’Ecuyer and Simard 2007] for some quantitative
data. As we saw in Section 3.3, an unadorned LCG passes BigCrush with 88 bits of state.
This algorithm can be applied at any size b where b ≥ r+2, so we can test it at a variety
of sizes. It passes with 58 bits of state, making an empirically good 64-bit LCG-based
generator practical.

That’s great, but perhaps you’re concerned that six bits isn’t enough headroom—we
could reasonably surmise that if someone developed MassiveCrush that ran for a month
using 32 GB of RAM, this generator would fail. That’s an entirely valid concern. But, as
we shall see, in the world of PCG generators, this one, which I’ll name PCG-RS (where
RS is for random shift), is the weakest of those we’ll name. Its only redeeming features
are its simplicity and speed.13

5.4.4. Rotations, Fixed and Random. In the last section, we took a well-known action on
LCGs, dropping bits, and randomized that. This time, we’ll focus on a well-known
property, specifically that the high bits are the most random. They are—unless we move
them somewhere else, which we can do with a bitwise rotate. Figure 12 captures the
effect on the lattice of a rotation—in essence it changes our perspective on it.

People don’t often rotate LCGs, but all these different lattice structures are prime
candidates for mixing together randomly by considering all eight possible rotations as a
family of permutation functions. Thus, the family is

fc(n)= (n�� r)� c,

where r is the number of bits of result. If we use t = log2 r top bits to select the rotation,
our output function is, as before, π2 ◦ f∗ ◦splitt.

We can see the result in our running example in Figure 12(i). Again, we have con-
siderably improved the randomness of our pathologically bad LCG, supporting the
intuition that this family of permutations is useful. In fact, if you compare the result
with Figure 11(j), you may think it looks a little “more random”. If so, you’d be right.

First, rotation is a significant perturbation of the lattice structure creating novel
lattices that would never have been generated by a vanilla LCG. Second, whereas

13 To me, it also has sentimental value because it was the first one I came up with.
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(a) Rotate 0 (b) Rotate 1 (c) Rotate 2 (d) Rotate 3

(e) Rotate 4 (f) Rotate 5 (g) Rotate 6 (h) Rotate 7

(i) a . . . h, mixed

Fig. 12: Applying rotates to bits 6 . . . 13.

random shifts needed to use bits 4 . . . 11 some of the time, we are drawing the lattice
only from bits 6 . . . 13 (while bits 14 . . . 16 provide the amount of random rotation to do).

As with random shifts, the permutation has changed the period of all output bits. For
our toy 16-bit generator, they all have period 216. Because we are using bits 6 . . . 13
to provide the input to the rotation, this subgenerator has an overall period of 213

and will repeat eight times, but for each repeat, it is placed at a unique rotation (by
bits 14 . . . 16), and all the rotations for all numbers produced by the sub-generator are
different.

As for empirical testing, random rotations (PCG-RR) passes BigCrush at 53 bits, which
is a significant improvement over PCG-RS (which passed at 58 bits). We might surmise
that a ReallyMassiveCrush test designed to overtax a 64-bit incarnation of PCG-RR will
need to work 2048 times as hard as BigCrush, which means running for well over a year
and using 1TB of RAM to do so. But random rotation was also low hanging fruit—we
can still do better.

5.5. Xor and Xorshifts
A bitwise xor operation is a permutation, it flips some bits in its target, and can be
inverted simply by repeating the operation. Figure 13(a . . . p) shows the results of
applying different xors to some of the bits in our running example. The pictures are
small because it’s just more of what we’ve already seen—they’re simply a permutation
on the lattice. And, once again, they form a family,

fc(n)= n⊕ g(c),
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(a) Xor 0 (b) Xor 1 (c) Xor 2 (d) Xor 3 (e) Xor 4 (f) Xor 5 (g) Xor 6 (h) Xor 7

(i) Xor 8 (j) Xor 9 (k) Xor 10 (l) Xor 11 (m) Xor 12 (n) Xor 13 (o) Xor 14 (p) Xor 15

(q) Maximize Periods (r) Avoid Invertability

Fig. 13: Applying Xors to bits 9. . . 12.

where g is defined as follows: if n ∈ Z2p and c ∈ Z2q , then g : Z2q → Z2p is defined as
g(c) = c� (p− q); in other words, it is the function that pads c out with zeros on the
righthand side so that it has the same number of bits as n.

But, something is different this time. Unlike previous operations we’ve considered,
applying this family of permutation functions gives us a well-known and well-analysed
operation, (rightward) xorshift, which is already known to be a permutation function.14

Thus we are able to see them both through the perspectives of previous work and
though the lens of permutation families.

Conventional wisdom about xorshift would have us focus on maximizing the period of
the bits. If that is our goal, we should write our output function, o, as

o(n)= join( f∗(splitr/2(n�� r))).

In other words, focus on the top r bits, and then perform an xorshift of r/2 bits.
Thus, for a 16-bit generator wanting 8 bits of result, the periods of the bits of output

would be, from high bit to low bit, 216,215,214,213,216,215,214,213. That option is shown
in Figure 13(q) and you’ll immediately notice that something looks different. What’s
going on. . . ?

Pursuing the goal of maximizing bit periods, we haven’t constructed the output
function following our usual rules. In the two previous examples, we defined it as
π2 ◦ f∗ ◦splitt, and we could have done so here (with t = r/2), as shown in Figure 13(r).

What is the difference between these two options? The first, maximize–bit-periods,
version is trivially invertible because we kept the top bits in the output rather than
throwing them away. The second, hard-to-invert, version adds a valuable property but

14 In this construction, fc can only represent xorshifts where the shift is at least as large as the number of
bits being xored; smaller shifts must be performed in stages via function composition. We won’t use fc to
perform any xorshifts where this issue arises.
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(a) Xorshift 3 (b) Xorshift 4 (c) Xorshift 5 (d) Xorshift 6

(e) Xorshift 7 (f) Xorshift 8 (g) Xorshift 9 (h) Xorshift 10

(i) a . . . h, mixed

Fig. 14: Applying Xorshifts.

at some cost; the periods of the bits are now 216,215,214,213,212,211,210,29, which is no
better than they were to begin with.

At this point, we’re left in something of a quandary, tugged in different directions
by these two principles. We could go with gut intuition based on the diagrams, which
probably leads us towards the second, or we could insist that bit periods are what
matters and stick with the first.

For a moment, let’s adopt an experimentalist approach and see if TestU01 can help
settle the argument (mindful of any stern disapproving looks, as the test suite ought to
be used as final confirmation, not a design tool!). It votes with its feet for the second
approach by a staggering margin—it passes at 60 bits, whereas the conventional-wisdom
approach doesn’t pass until 70 bits; you could even claim that TestU01 considers the
second option a thousand times better! Perhaps applying an invertible permutation to
a low-quality random number doesn’t fool TestU01?

But we can hardly make decisions based on diagrams, intuition and speculation about
how “perceptive” TestU01 is. And it’s worse, because these aren’t the only xorshifts we
could have done—there are several ways we could have constructed and applied the
permutation family. Wait a second. . . There are several permutations we could apply,
as in, a family of them. And we’re having a hard time choosing. . . So perhaps we should
choose the xorshift randomly? That is exactly what we will do in the next section!

5.5.1. Random Xorshift. Once again we’ll apply a familiar strategy to our example. We
will use the top three bits to choose members of a family of eight permutations, but this
time the permutation is an xorshift. You can see the results in Figure 14.
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Constructing the function family is a little challenging because we will use the top t
bits two ways at once—we will use them to both define how much of an xorshift to apply
and also to be part of the xorshift itself, all without breaking any of the rules. (We could
avoid this dual-use approach by grabbing t spare bits that we otherwise wouldn’t need
from elsewhere in the state, and xoring them with the top t bits to create t more bits
with the same period but different values. But xors take time, and we don’t always have
spare bits at really small sizes. So instead we’ll use the same bits two ways.)

To do so, let us define our family function fc :Z2b−t →Z2r , where c ∈Z2t , as

fc(n)= ((n +� c)�� r)⊕ (c� (r− c)),

where the +� operator is rightward xorshift (i.e., x +� y= x⊕ (x� y)), and apply it in the
usual way, π2◦ f∗◦splitt, where t is the number of top bits we wish to devote to selecting
a random xorshift (in essence I have performed the top part of the xorshift manually,
but the bottom part using the +� operator).

This equation may look a bit daunting, but we can check it easily. If we set r = b, the
family functions should be permutations, and in this case we can quickly verify that for
all c, fc is straightforward to invert.

As you might hope, this output function is an improvement over our previous ones,
and is able to pass BigCrush at only 45 bits. Given that this function is really the
composition of two functions, we shouldn’t be surprised that it performs better, but this
improvement also reminds us that the composition of permutations may be better than
single ones, an idea we’ll look at in more detail in Section 6.

5.5.2. Modular Multiplication. The final permutation function we’ll consider doesn’t need
function families. It is the multiplication step that forms the core of any good MCG. As
we discussed earlier, it is sometimes used in combination by other generators as an
improving step. For example, there are known weaknesses in XorShift generators, so
XorShift* generators such as RanQ1 [Press et al. 2007] add an MCG multiplication as
final step to improve their output.

In contrast, adding an MCG multiplication (alone) to an LCG or MCG makes very
little difference to the quality of the output (because two multiplications are identical
to one combined multiplication), inspiring a rule of thumb that it is better to combine
different approaches rather than add more of the same thing [Press et al. 2007].

But our previous two output functions, xorshift and randomized xorshift, pushed
good random bits to the right, and thus a multiplication can shift the randomness back
to the left again and won’t be undoing our earlier multiplications.

5.5.3. And Many More. . . Just Follow the Rules. These are just a few of a myriad of possible
permutations open to us. There are other examples of simple permutations that can be
cast into the framework of function families and applied as a tuple permutation, and I
would encourage you to think of some yourself. To that end we will finish with a practical
perspective on how to write your own. I hope this discussion will be particularly useful
to any readers who were daunted by the mathematical formalisms used in the preceding
subsections (although, if you are a programmer, I would encourage you to recognize
that math is much like another kind of code).

Here are the rules for building new permutation functions, in English:

— Bits are precious. You can throw them away but you can’t make new ones, and you
can’t even duplicate the ones you have.

— Divide the bits into two disjoint groups, the target bits and the control bits.
— The control bits determine how to mess with the target bits (sometimes I call them

the opcode). The “messing” is only limited by your imagination, but it must be a per-
mutation. If you can’t undo it and be back with what you had, it’s not a permutation.
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Fig. 15: BigCrush + Crush test failures at different bit sizes.

— While bits are acting as control bits, they must not be modified.
— You can do as many rounds as you like, so bits that were used as control bits in one

round can become target bits in the next.

The above rules are just a restatement of the mathematics, nothing new. (I find this
perspective useful, however. It’s how I think when writing code. It’s like a game, and
it’s actually quite easy to play.)

5.5.4. Summary. In this section we’ve built some useful output functions that can
efficiently scramble the output of a linear congruential generator. Scrambling itself
was never the difficulty, it was doing so in as few operations as possible. All the
functions except MCG multiply are composed from very small number of very fast
bitwise operations.

In the next section, we will embrace the composability of permutations to do even
better.

6. SOME MEMBERS OF THE PCG FAMILY
Having constructed some basic building blocks, we can compose them together to
produce even stronger output functions that form highly usable generators at a variety
of bit sizes. The task now becomes one not of theory but engineering; we must balance
trade-offs. For example, a particular output function may offer excellent statistical
results, but lose out to others because it isn’t quite as fast as they are. Different
applications need different things, so we can tailor the output function to favor a
particular criterion.

Because there are a myriad of ways we could combine permutation functions, we will
only discuss a small subset of them, ones that are interesting in some way.

6.1. Performance
Figure 15 shows the statistical performance of the members of the PCG family that
I have chosen to highlight (we will cover them individually in Section 6.3).15 All the

15 Figure 15 also includes the performance of applying an off-the-shelf hash function, Fast Hash, which we will
discuss in Section 9, Related Work.
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chosen members pass BigCrush at 49 bits or less, providing ample headroom for use
at 64 bits. Some members pass at much fewer, most notably PCG-RXS-M-XS, which
passes at 36 bits, the minimum permitted by the theoretical model introduced in
Section 3.2. In fact, at sizes less than 36 bits, it exceeds those predictions, which is
possible because the model assumes that all the tests in BigCrush will notice when a
random number generator is forced, by its uniformity, to deviate from truly random
behavior, but whether a particular test actually detects the deviation depends on what
exactly it is testing and how stringently it is doing so.16

The other generators turn in weaker (but still excellent) statistical performance in
furtherance of another goal, speed. The statistically weakest ones are only intended
for fine-tuning 128-bit generators that, by virtue of their large size, can already pass
BigCrush with significant headroom unassisted.

In contrast, Figure 16 and Table I summarize other properties of our family members
beyond statistical performance, including their speed. For comparison, the bar chart
and table include the most notable and best performing generators from Section 2
(although for space reasons some popular generators from Figure 1 that do not even
survive even minimal statistical testing are not included). All the competing generators
except XorShift 64/32 and Arc4Random do not survive statistical testing. As a reminder,
XorShift 64/32 and RanQ1 are the exact same generator, but the latter claims that you can
use all 64 bits of its output, whereas the former does not.

Both the bar chart and the table group the generators into two categories, those
that expose the state of the generator in their output such that it can be trivially
reconstructed from the generator’s output and those that do not. This issue is discussed
in more detail in Section 6.2.2.

The full measurement details are given at the very end of the paper (in Section 10)
because they’re uninteresting for most readers, but there are some points worth noting.
All the PCG generators are very fast; so much so that major speed differences occur
depending on whether a single-cycle addition operation is present or not (as witnessed by
the MCG vs. LCG variants). Similarly, issues such as register selection and instruction
scheduling make a difference at this low level, so I have given every generator a chance
to shine (even non-PCG ones), by compiling them all with two compilers and two
optimization settings (purportedly choosing between optimizing for speed and code size)
and picking the fastest code.

Table I also shows the size and periods of these generators. All of the PCG generators
except those marked EXT are very compact. The EXT variants use the extension tech-
niques that will be described in Section 7.1. For example, PCG-XSH-RS 64/32 (EXT 1024)
provides 1024-dimensional equidistribution and a period of 232830.

From this data, you might surmise that the fastest generators are the most preferable,
but, for many applications, it is likely that a 0.1 nanosecond difference in the time to
generate a random number may not make a significant difference to performance—even
for demanding applications, it is probable that memory bandwidth is likely to be more
of a concern than tiny differences in generator speed.

6.2. Implementation Notes
Before we discuss specific generators, we will examine some commonalities between
their implementations, as provided by the PCG library.17

16 For the curious, it is only the MaxOft test that brings down PCG-RXS-M-XS at 35 bits. Depending on luck,
sometimes it passes, but too often it gives a 1 in 10,000 p-value, and that’s just not quite good enough. See
Section 10 for more about test methodology.
17 The PCG library is available at http://www.pcg-random.org/.
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Fig. 16: Benchmark performance contrasting PCG generators against widely used
generators. Higher Gb/s is better. All members of the PCG family are faster than other
generators in their class. RanQ1, Mersenne Twister, and Minstd also fail statistical tests.

Method Period State
(Bits)

Output
(Bits)

Speed
(ns/rand)

Speed
(Gb/s)

Best
Compiler

PCG XSL RR RR 128 (LCG) 2128 128 128 1.81 65.86 g++ -O2

PCG RXS M XS 64 (LCG) 264 64 64 1.01 58.77 g++ -O2
RanQ1 264 −1 64 64 1.35 44.09 g++ -Os
Mersenne Twister 64 219937 −1 20032 64 2.17 27.48 g++ -O2

PCG RXS M XS 32 (LCG) 232 32 32 1.01 29.49 g++ -Os
Mersenne Twister 32 219937 −1 20032 32 2.16 13.79 g++ -O2
Minstd 231 −2 64 31 3.36 8.59 g++ -O2

PCG XSL RR 128/64 (MCG) 2126 128 64 1.05 56.79 clang++ -O2
PCG XSL RR 128/64 (EXT 32) 22174 2176 64 1.29 46.36 clang++ -Os
PCG XSL RR 128/64 (LCG) 2128 128 64 1.70 35.92 g++ -Os

PCG XSH RS 64/32 (MCG) 262 64 32 0.61 48.72 g++ -O2
PCG XSH RR 64/32 (MCG) 262 64 32 0.66 45.31 g++ -O2
PCG XSH RS 64/32 (EXT 1024) 232830 32832 32 0.78 38.29 g++ -O2
PCG XSH RS 64/32 (EXT 2) 2126 128 32 0.78 38.29 g++ -O2
PCG XSH RS 64/32 (LCG) 264 64 32 0.79 37.95 g++ -O2
PCG XSH RR 64/32 (LCG) 264 64 32 0.84 35.67 g++ -O2
XorShift* 64/32 264 −1 64 32 1.35 22.05 g++ -Os
Arc4Random 21699 ∼ 2064 32 10.29 2.90 g++ -O2

Table I: Benchmark performance.
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6.2.1. Four Variants. Each implementation is available in four variants: an extra-fast
variant that uses a MCG rather than an LCG to avoid performing addition (but reduces
the period by a factor of four); a normal variant where the LCG adds an arbitrary fixed
constant; an automatic-unique-stream variant that, at zero space overhead, provides a
distinct stream compared to its compatriots; and an explicit-switchable-stream variant
that lets the user select a different stream at any point.

These variations are provided by the underlying LCG generation scheme, as we
discussed in Section 4.3.2. As we mentioned there, the trick used by the automatic–
unique-stream variant involves using the address (or “object id”) of the state to create
the additive constant and incurs zero additional space cost.

6.2.2. Security Considerations. Thanks to the address-space–layout randomization per-
formed by most modern operating systems, the automatic–unique-stream variant can
produce a different sequence of random numbers every time the program is run, even
if it is seeded with the same value. In many situations, this feature is advantageous,
especially in systems where unpredictability is an asset, but in settings where repeata-
bility is desired, we can instead use the normal or explicit-switchable-stream versions
instead.

In addition, most of the PCG variations presented in the next section have an output
function that returns only half as many bits as there are in the generator state. But
the mere use of a 2b/2-to -1 function does not guarantee that an adversary cannot
reconstruct generator state from the output. For example, Frieze et al. [1988] showed
that if we simply drop the low-order bits, it is possible for an adversary to discover
what they are. Our output functions are much more complex than mere bit dropping,
however, with each adding at least some element of additional challenge. In addition,
one of the generators, PCG-XSL-RR (described in Section 6.3.3), is explicitly designed
to make any attempt at state reconstruction especially difficult, using xor folding to
minimize the amount of information about internal state that leaks out.18 It should be
used when a fast general-purpose generator is needed but enhanced security would also
be desirable. It is also the default generator for 64-bit output.

For sensitive applications, the explicit–switchable-stream variant is probably the
best choice, because it almost triples the number of unknown bits (e.g., in a 128-bit
generator, the output function is a 264-to-1 uniform function requiring a 64-bit guess to
invert, and an additional 127 bits of additive constant must be guessed, too, for a total
of 191 unknown bits).19 If more bits of unknown state are desired, users can turn to the
extension that provides k-dimensional equidistribution, described in Section 7.1.

Although these properties make it extremely challenging for an agent observing the
external behavior of a program to guess the state of its random number generator, we
should also consider the case where the entire program state becomes compromised.
For this reason, in programs performing a sensitive task, once a set of random numbers
has been produced, it should advance the generator state by an arbitrary amount and
change the additive constant, thereby destroying the previous state and making it
impossible to recover numbers that were previously generated. Section 7.2 describes a
technique that can allow this action to happen automatically.

Finally, in some situations the above security considerations may be counterpro-
ductive. Sometimes users actually desire a b-bit generator that iterates through b-bit
integers with each one occurring exactly once—sometimes for the no-repeats property

18 Related work on the difficulty of inferring a generator’s internal state from its output is discussed in
Section 9.
19 Note that a secret additive constant does not by itself add much security, it can only hope to do so in
combination with an appropriately constructed output function [Stern 1987]
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and sometimes because space is at a severe premium. In this situation, we must use
a 1-to-1 output function, which is, by definition, invertible, and allows full recovery of
generator state. To discourage their use by casual users and warm the hearts of security
professionals, these variants are explicitly marked insecure. In contrast, the normal
variants are not explicitly labeled as secure—that would be premature; additional
scrutiny is required for such a claim. We will return to these issues in Sections 8 and 9
which discuss future and related work, respectively.

6.2.3. Instruction-Level Parallelism. The task of calculating the output function and ad-
vancing the state are disjoint; one does not require anything from the other. Thus we
can adopt a simple strategy of calculating the output function using the previous value
of the state while, at the same time, we advance the state. In modern CPUs, which
typically have many working registers and can execute multiple instructions per clock,
it is advantageous to apply this strategy to allow the CPU to get more done at once.

Note, however, that when the state is very large, giving the CPU more to do at once
can actually be counterproductive, so for optimal performance on a given CPU both
options can be tried. The implementations in the PCG library are structured to allow
this change to be performed trivially.

6.3. Specific Implementations
Now let us examine the five family members we are focusing on in more detail. As
with PCG-RS in Section 5.4.3, sample code will be given tersely for a specific bit size.
The version of the code in the PCG library is longer, uses named constants and can be
applied at multiple bit sizes. (I strongly recommend that people use the library rather
than copy code from this paper.)

Note also that although the generators are presented with mnemonic names based
on the permutations they perform, users of the PCG library should rarely select family
members by these mnemonics. The library provides named generators based on their
properties, not their underlying implementations (e.g., pcg32_unique for a general-
purpose 32-bit generator with a unique stream). That way, when future family members
that perform even better are discovered and added (hopefully due to the discoveries of
others), users can switch seamlessly over to them.

6.3.1. 32-bit Output, 64-bit State: PCG-XSH-RR. Here the design goal is to be a good all-
purpose random number generator. The intent is to balance speed with statistical
performance and reasonable security, charting a middle-of-the-road path. (It’s the
generator that I recommend for most users.)

The strategy is to perform an xorshift to improve the high bits, then randomly rotate
them so that all bits are full period. Hence the mnemonic PCG-XSH-RR, “xorshift high
(bits), random rotation”.

With 64 bits of state, the 32-bit output function can be coded tersely as

output = rotate32((state ^ (state >> 18)) >> 27, state >> 59);

assuming that rotate32(v,r) denotes an unsigned 32-bit bitwise clockwise rotation of
r bits on v (i.e., v � r). Note that the top five bits specify the rotation, leading to the
constants above (64−5= 59, 32−5= 27, and b(5+32)/2c = 18).

6.3.2. 32-bit Output, 64-bit State: PCG-XSH-RS. Because 32-bit output, 64-bit state is likely
to be a common use case, there is an alternative generator that makes a slightly
different trade-off—slightly worse statistical performance for slightly greater speed.
This version performs a random shift rather than a random rotation. (There is an
implied fixed shift in PCG-XSH-RR so this version performs slightly less work.) The
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difference between the two is minor, and for most users PCG-XSH-RR is probably the
better choice.

With 64 bits of state, the 32-bit output function can be coded tersely as

output = (state ^ (state >> 22)) >> (22 + (state >> 61));

Note that the top three bits specify the amount of the random shift; in this case a shift
of up to seven bits (64−3= 61, and 32−3−7= 22).

6.3.3. 64-bit Output, 128-bit State: PCG-XSL-RR. This generator is intended for more de-
manding applications, either those that need 64-bit values or those that need enhanced
security. Because it has 128 bits of state, headroom is less of a concern, so the generator
is instead optimized for performance and security. Performance is a particular concern
at 128 bits because for many architectures the 128-bit value will be represented by two
64-bit processor registers, and some operations (such as shifts) require several steps to
perform.

Thus this generator begins with a 64-bit rightward xorshift. According to BigCrush’s
divinations, this step does essentially nothing to improve quality, but that is not the
goal. First, we needed to perform some kind of xorshift to have both a high-period target
value and a high-period rotation value for the next step, and 64-bit shift is trivial for
the compiler to implement (it doesn’t actually do any shifting at all if the high and low
halves are in distinct registers, just a direct xor). The second and more important goal
is obfuscation. The resulting value is our whole state folded in on itself. There are 264

possible states that could generate this value, making it hard to determine generator
state from the output. Finally we make the real improvement step, a random rotation,
which ensures that all the bits are full period.

This generator uses 128-bit arithmetic, which is efficiently supported by many of to-
day’s languages (including C and C++ with many popular compilers, including GCC and
Clang). Platforms that do not make 128-bit arithmetic easy can use a two-dimensional
version of PCG-XSH-RR or PCG-XSH-RS instead, using the techniques outline in Sec-
tion 7.1.

The mnemonic PCG-XSL-RR stands for “xorshift low (bits), random rotation”. With
128 bits of state, the 64-bit output function can be coded tersely as

output = rotate64(uint64_t(state ^ (state >> 64)), state >> 122);

assuming that rotate64(v,r) denotes an unsigned 64-bit bitwise clockwise rotation
of r bits on v (i.e., v � r). Note that the top six bits specify the rotation, leading to the
constants above (128−6= 122, and 128/2= 64).

6.3.4. 32-bit (or 64-bit) Output & State: PCG-RXS-M-XS (Insecure). This generator is the most
statistically powerful of the ones we are considering—it can pass BigCrush with only
36 bits of state, the theoretical minimum. In a cruel twist of fate, we will give it the
rottenest job, generating 32 bits of randomness from 32 bits of state. It’s cruel because
the generator has no choice but to perform its permutation in an invertible way (because
the number of output bits and the number of state bits are the same), and so all of
its statistical goodness can be undone by anyone who knows its permutation function,
unmasking the lowly LCG it has inside (but given the intricateness of the permutation,
that is unlikely to happen by accident).

All the output functions we have seen up to now were designed to throw away some of
the bits, but this output function must improve them all. It does so by composing three
output transformations. First, it performs a random xorshift (described in Section 5.5.1),
which improves the middle bits of the output but necessarily leaves the upper (control)
bits untouched. Then it performs a multiplication step, which improves the upper bits.
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Finally, it improves the lowest bits using an xorshift to xor the bits from the upper third
of the number with the bits in the lower third (another random xorshift would work
here too, but these bits only need modest improvement and the fixed shift is faster).

This somewhat complex output function allows PCG-RXS-M-XS to pass SmallCrush
with 32 bits of both output and state, which is a rarely seen achievement (although
Hellekalek1995 [Hellekalek 1995] does also manage it, although at dramatically worse
speed, as we previously discussed in Section 2.4). We cannot expect the 32-bit variant
to pass Crush or BigCrush—as we have already seen, even a theoretically ideal generator
needs 36 bits of internal state to do so.

PCG-RXS-M-XS can also generate 64 bits of output with 64 bits of state. It can likewise
provide 128 bits of output with 128 bits of state, but the next generator is custom
designed for that task.

Notwithstanding its speed and compactness, all but the most space-constrained
applications should prefer a more secure generator, unless the “every number appears
only once” property is especially useful.

6.3.5. 128-bit Output & State: PCG-XSL-RR-RR (Insecure). This generator is a simple tweak
to PCG-XSL-RR to make it suitable for returning the whole random state (as inadvisable
as that is). It just adds a random rotation to the high-order bits. It exists for the same
reason that PCG-XSL-RR does; we could use PCG-RXS-M-XS at 128 bits, but if the state is
split across two 64-bit registers, multiplication would be slow, and so we turn to other
means instead. It’s not shown on the graph of statistical performance because it has
the same performance as PCG-XSL-RR.

7. EXTENSIONS & TRICKS
We’re almost done at this point, but there are a couple of final tricks left to cover.
Because PCG permutations are composable, we also gain extensibility. We can allow
an external agent of some kind to interpose its permutation before we apply one of the
permutations we’ve discussed in the previous sections, or apply its own permutation
afterwards. This strategy allows us to implement a variety of useful facilities, including
k-dimensional equidistribution for large k at very low cost, and enhanced cryptographic
features.

7.1. Very Long Periods and k -Dimensional Equidistribution
Although we can achieve very long periods and k-dimensional equidistribution for
arbitrary k using the counting techniques we discussed in Section 4.3.4, there is a
better method available to us via the extension mechanism.

As usual, let’s suppose we have a b-bit generator producing r-bit values, which we
shall call the base generator. The extended generator consists of those b-bits of state and
k additional r-bit values (where k ≥ 1), which we shall call the extension array. We use
the state of the base generator to choose a value from the extension array (by passing
the base-generator state through a selector function, s :Z2b →Zk). The final output of
the combined generator is produced by xoring the selected value from the extension
array with the random number produced by the base generator (i.e., the result from
applying its output function, o :Z2b →Z2r , to its state). Restated using the formalisms
introduced in Section 5.4, the function family for the combined generator is

fc(〈n1, . . . ,nk〉)= ns(c) ⊕ o(c),

where c ∈Z2b is the state of the base generator and the argument to f is the extension
array (as a k-tuple). Thus, f∗ :Z2b × (Z2r ×·· ·×Z2r )→Z2b ×Z2r and the output function
for the extended generator is π2 ◦ f∗.
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The selector function can be an arbitrary function, but for simplicity let us assume
that k = 2x and that selection merely drops bits to choose x bits from the state. Two
obvious choices for choosing x bits are taking the high-order bits and taking the low-
order bits. If we wish to perform party tricks like the ones we discussed in Section 4.3.4,
it makes sense to use the low-order bits because they will access all the elements of
the extension array before any elements repeat (due to the property of LCGs that the
low-order l bits have period 2l). Conversely, if we use the high-order bits, the extension
array will be accessed in a more unpredictable pattern.

Thus far we have an output function that uniformly maps the state of the combined
generator to an r-bit value, but we must also define how the extension array advances.
If the combined generator advances both the base generator and the extension array
though all possible states, we will have a uniform generator (whereas if we do not
advance it at all, we will not!). We can advance the extension array through all possible
states using the same strategy we saw in Section 4.3.4. In particular, we can either
choose to advance the array elements each time they are accessed or less frequently.
The only requirement is that we advance the state of the extension array every time the
primary generator crosses zero so that over the full period of the combined generator
every possible extension array state is married with every possible base-generator state.

This technique extends generator’s period from 2b to 2kr+b (the factor of k comes from
the k r-bit values in the extension array, and b from the base generator). Because the
only limit on k is that k ≤ 2b and r ≤ b, the maximum possible period is 2(2b+1)b ≈ 2b2b

;
thus the true constraint on period is actually available memory. If the selector function
uses the low-order bits of the state to provide the index into the extension array,
each element of the extension array will be accessed in turn (in some arbitrary but
well-defined sequence), thereby providing k-dimensional equidistribution.

In practice, for base generators with many bits of state (i.e., 128 bits or more), we can
neglect to advance the state of the extension array at all, because we are only required
to advance it when the main generator completes a full period, and that is going to take
a very long time.

In Figure 16 and Table I, PCG-XSH-RS 64/32 is shown with two-dimensional and
1024-dimensional equidistribution using this mechanism (the EXT 2 and EXT 1024
variants), whereas PCG-XSL-RR 128/64 (EXT 32) provides a longer period but opts for
greater unpredictability rather than 32-dimensional equidistribution. In all cases, the
base generator is an MCG, and the extended variant actually runs faster than the
simple LCG variant, showing that the overheads of the extension mechanism are very
low.

7.2. Enhanced Cryptographic Security
We can also use the above mechanism for added cryptographic security. The extension
array of k xor values adds more state to the generator, making it even more inscrutable.
Moreover, even though it is technically a violation of uniformity, a cryptographic exten-
sion can use the low-order bits to perform an action after every 2i numbers have been
generated, for some i (by performing it when those i bits are all zero). One option, for
example, would be to reset the generator using an external source of entropy.

7.3. Somewhat-Secure Seeding
The seed is fundamental to a random number generator—if you know it, you can
repeat its output. Thus security-conscious applications must pay particular attention
to choosing their seed in a way that cannot be easily guessed. Current best practice is
obtain random bits from the seed from a trustworthy external source provided by the
system, or to implement a comprehensive seed-management scheme (e.g., as suggested
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by Schneier & Ferguson [2003; 2010]). But practitioners writing applications where
security isn’t a particular concern may not be willing to devote the extra execution time
necessary to apply these methods and have a tradition of falling back to fast-but-weak
options.

The permutation functions of PCG can tread a middle ground, allowing a couple of
quickly accessible local sources of entropy to be hashed and combined to produce a seed
that is at least somewhat obscure in minimal time.

8. CONCLUSION & FUTURE WORK
I hope that you will agree that the PCG family of generators significantly raises the bar
for what we should expect from a random number generator. It shows that it is possible
to have one generator that provides all the properties we consider desirable.

I very much hope that others will build on this work. I have outlined some members
of the PCG family, and they perform very well, but there is always room for improve-
ment. Possibly there is a PCG generator that performs as quickly as PCG-RS with the
statistical performance of PCG-RXS-M-XS, for example; I would like to hope so.

Likewise, I would encourage people working with other generation schemes to use
some variation of the assessment methodology I have set out here—in particular the
concept of headroom. In fact, I believe that this concept merits further exploration.
Does “16 bits of headroom” mean the same thing for two different generators? Does the
steepness of the different lines in Figures 7 and 15 mean something about the character
of the generator? Surely it must. . . ?

Thoughout the paper, I have not hesitated to point out the predictability of most
general purpose generators and the security concerns such predictability poses. I have
argued that the PCG family is at least a step in the right direction, but I have been
reluctant to make any strong claim about its cryptographic security. It isn’t trivial to
crack the state of a PCG generator, particularly PCG-XSL-RR, but a full cryptographic
analysis is beyond the scope of this paper, and, in any case, is much better performed by
people with a vested interest in finding flaws in the permutation functions. I hope there
are no such flaws, but at least if there are, the issue won’t be architectural; stronger,
more secure output functions could then be developed.

Permutation functions on tuples are a general technique that can probably also be
fruitfully applied to other areas, in particular hashing, but in that domain there are
also powerful engineering tradeoffs to consider. The issue is not performing the best
hash, it is performing the best you can in a given time. Determining the best trade-off
remains an open question, but at least another tool is available for the task.

Some of the most interesting things in computer science rely on random number
generation. I am delighted that the PCG family can be there to help. It is also fitting
that after helping support randomized algorithms for years, we have an excellent
strategy for randomness and it is itself a randomized algorithm, because that’s the kind
of bootstrapped self-referentiality that makes computer science so wonderful.

9. RELATED WORK
For a broader perspective on random number generation, there are several good sum-
maries. Pierre L’Ecuyer gives an excellent recent summary of the field in a chapter in
the Handbook of Computational Statistics [2012]. Knuth’s Art of Computer Program-
ming [1997] also covers the area in depth. Press et al.’s Numerical Recipes [2007] also
provides sound practical advice. Schneier & Ferguson [2003; 2010] provide an excellent
grounding on cryptographic security.

Press et al. [2007] advocate strongly for combined generators, arguing that there is
strength in combining multiple generation techniques with different properties. The
PCG family uses a single base generator, but is in some sense a combined approach
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because the underlying mechanisms of its output functions are quite different from the
underlying mechanisms its LCG base generator.

This paper advocates for generators whose output range is 2r, for some positive integer
r, because these generators are useful for generating streams of bits (see Section 2.4.1).
In contrast, some generators, such as MRG32k3a [L’Ecuyer 1999a], are not designed with
a power-of-two output range in mind, instead using a generator with a prime modulus
to produce floating-point values in the range 0–1. Unfortunately, producing random
floating-point values uniformly is tricky (assuming every floating-point value should
have some chance of appearing), because the range of values from 0–1 that can be
represented in floating-point is distinctly nonlinear. In 2014, Taylor Campbell explained
the issue in detail and presented an algorithm for uniformly generating floating-point
values.20 The essence of the algorithm is to repeatedly subdivide the 0–1 interval using
a random choice. Interestingly, this algorithm requires a random bitstream, consuming
a variable number of random bits, up to 1024 bits in the worst case.

The techniques in this paper obviously have strong connections to hashing. In fact, if
we apply a 32-bit rendition of one of the best general-purpose integer hash functions,
Fast Hash21, twice to the output of a linear congruential generator, we can also pass
BigCrush at 36 bits (and fail the exact same test at 35 bits that PCG-RXS-M-XS did,
namely MaxOft). But if the Fast Hash is applied just once, the generator doesn’t pass
until 42 bits as shown in Figure 15. More importantly, the speed of either generator is
mediocre compared to the ones presented in Section 6.3.

The idea of using a random number generator’s own randomness to improve its output
is a very old one, being suggested by Bays & Durham [1976]. Typically, however, the
idea has been to shuffle the order of the output or discard some of it. Discarding output
is problematic because, unless undertaken with extreme care, it breaks uniformity.
Shuffling tends to be a local operation that may not adequately mask problems with
the generator and can also prove memory intensive. KnuthB [Knuth 1981] adopts the
shuffling strategy, and, as we saw in Section 2.1.2, it does not fare well in empirical
tests. PCG generators have an advantage because they permute the output at a much
lower level, and because they keep some of their state to themselves.

As mentioned in Section 6.2.2, Stern [1987] observed that Knuth’s [1981] advice to
drop the low-order bits and keep LCG parameters secret is not sufficient for crypto-
graphic security. Frieze et al. [1988] used the LLL algorithm [Lenstra et al. 1982] to
provide a practical reconstruction algorithm. More recently, however, Contini [2005]
showed that secret truncated linear congruential generators may not necessarily be
insecure for properly chosen parameters, giving hope that the obfuscation provided by
PCG’s permutation functions may also be sufficient to make the problem hard. The
use of xor folding in PCG-XSL-RR is somewhat reminiscent of the shrinking generator
proposed by Coppersmith et al. [1994] (which combined two generators with xor), but it
is probably more akin to Meier & Staffelbach’s self-shrinking generator variant [1994],
which has suffered cryptographic attack (e.g., Zenner et al. [2001; 2006]), although
these attacks appear to be computationally expensive.

A good general description of possible cryptographic attacks on a random number
generator is given by Kelsey et al. [1998], and PCG has at least been designed with those
attacks in mind, but currently lacks a full cryptographic analysis. In contrast, there are
several generators that have had a such an analysis—Schneier & Ferguson [2003; 2010]
present Fortuna (a successor to Yarrow [Kelsey et al. 2000]), a modern cryptographically
secure generator that takes special care to ensure it is seeded in a safe way. Fortuna’s goal

20 Available at http://mumble.net/~campbell/tmp/random_real.c.
21 Available at https://code.google.com/p/fast-hash/.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



PCG: A Family of Fast Space-Efficient Statistically Good Algorithms for Random Number GenerationA:43

is excellent cryptographic security for use as a stream cipher, rather than a fast rate of
random-number generation. In general, generators designed for stream ciphers may
not have the same concerns about statistical properties (such as uniformity) compared
to general-purpose random number generators. For example, Arc4Random is not uniform
[Mister and Tavares 1999; Basu et al. 2008].

Turning to speed, Vigna [2014a; 2014b] has also suggested that simple low-overhead
generators can produce excellent results. His generators appear to be an improvement
in the world of XorShift* generators, but the improvement comes at a space cost, and
they do not perform as well as the PCG generators described here.

Other recent authors have also focused on attempting to marry good statistical
performance with fast execution and not-unreasonable space usage. Neves & Araujo
[2012] suggest a nonlinear generator that, although it does not perform as well as
PCG on desktop hardware, appears to perform well on GPUs, whereas thus far PCG
generators have not been specialized for that domain.

Several recent authors [Vigna 2014a; 2014b; Neves and Araujo 2012] have produced
128-bit (or more) generators that pass the BigCrush battery. Presumably their generators
really are superior to the basic 96-bit LCG we saw passing BigCrush and running quickly
in Sections 2.1.2, 2.3, and 3.3, but it would strengthen their results to see the comparison
made. Hopefully the framework presented in Section 3 could be useful in that task.

10. TEST METHODOLOGY
Timing tests were run on a Intel “Haswell” Core i7-4770 CPU, running at 3.40GHz
with Turbo-boost disabled, which happens to be the same architecture used by Vigna
[2014a; 2014b]. (I achieved very similar results, including sub-nanosecond genera-
tion, with an older computer, a Mid 2012 Retina MacBook Pro, with an Intel Core
i7-3720QM CPU, running at 2.60GHz.) SmallCrush timings use the values reported by
the TestU01 suite. Microbenchmark timings were performed using a custom framework
that measured both cycle times using the timestamp counter, and real time using
nanosecond-resolution timing. The test suite measures and subtracts loop overhead,
and care is taken with compiler optimization to make sure that all tests are fair. In
particular, the code is optimized for both size and speed, but heavy optimization settings
are avoided to prevent loop unrolling from obscuring the picture. If anything, this condi-
tion is unfair to the PCG generation scheme because its tiny code size makes unrolling
very viable and can enhance its performance beyond that reported in the paper.

Because the code for PCG generators is extremely small and fast, executing in very
small numbers of cycles, issues such as register selection and instruction scheduling
become significant. Thus for overall fairness, code is compiled (as 64-bit) with multiple
compilers (GCC 4.8.2 and Clang 3.4) and the fastest code used. It turns out that
this approach was very favorable to the Mersenne Twister—the GCC implementation
is considerably faster than the one used provided by the Boost library or Clang. The
OpenBSD code for Arc4Random was converted to a C++ class to allow it to be fairly
compared with the other generators, which were all written in C++. The full timing
code is provided with the PCG library.

In the interests of space, the data presented in Section 6.1 focuses exclusively on
64-bit performance on desktop hardware, but the PCG family also performs well on
32-bit hardware, including lower-end systems.22 For example, in tests run on a dual-core
Cortex-A7 ARM CPU at 1 GHz (in an Allwinner A20 (sun7i) SoC, as might be found in
an embedded system or low-end smartphone), PCG-XSL-RR 64/32 (LCG) outperforms the
32-bit Mersenne Twister by a factor of 2.07. Interestingly, on the ARM architecture there

22 More performance data, including 32-bit timings can be found at http://www.pcg-random.org/.
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is no difference in performance between MCG and LCG variants because ARM has a
combined integer multiply-add instruction.

Statistical tests employed two machines, one with 48 cores and one with twelve.
Neither is particularly powerful or new, but their ability to apply parallelism to the task
of running TestU01 allowed them to devote over a year of CPU time running batteries
of tests on various generators at various sizes in a little over a week.

For TestU01, generators are tested both normally and with their bits reversed. Also,
because TestU01 only expects 32-bit resolution (and actually only tests at 31 bits at a
time), 64-bit generators have both their high and low 32 bits tested. Tests that give a
p-value worse than 1 in 109 are considered clear fails, whereas tests where the p-value
is worse than 1 in 1000 are rerun five times. If a test shows a worse than 1 in 1000
result in two or more of its retests, it is also considered a fail. In theory, given the
number of generators tested, there was some chance that an unlikely event would
have muddied the waters, but the only such event was the reversed variant of an
every-permutation-but-the-kitchen-sink generator, PCG-XSH-RR-M-XS, passing BigCrush
at 35 bits. So it can be done. If you’re lucky.

Downloads
Source for the PCG family of generators, in C and C++ is available at http://pcg-random.org.
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readings. Christopher Stone listened to me explain the concept of function families and provided
their name, and his review comments helped enhance the paper’s clarity and rigor. Jim Boerkoel’s
feedback helped Section 3 become a section in its own right. Nick Pippenger read a very early
draft of the paper and provided both warm encouragement and valuable feedback. Maria Klawe
listened to an oral description of the technique and encouraged me to formalize my intuitions
(some of those formalizations do not appear here; I hope that they will appear a future paper). Art
Benjamin assured me that my statistical model of the generalized birthday problem was “obvious”
given that it was built using elementary methods. And finally, early on when I was reluctant to
believe I could have really have stumbled onto anything that hadn’t been discovered before, it
was Zach Dodds who assured me that sometimes it is the simple ideas that get overlooked and
encouraged me to write this paper.

23 “Or maybe it was the zeros that weren’t up to spec!” — Christopher Stone.
24 Available at http://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful.
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