
Harvey Mudd College
Computer Science Department

Technical Report
301 Platt Boulevard, Claremont, CA 91711, USA

www.cs.hmc.edu

PCG: A Family of Simple Fast
Space-Efficient Statistically
Good Algorithms
for Random Number Generation

Melissa E. O’Neill

HMC-CS-2014-0905
Issued: September 5, 2014



Copyright 2014, Melissa O’Neill

This material is based in part upon work supported by the National Science Foundation under
Grant Number CCF-1219243. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of
the National Science Foundation.



PCG: A Family of Simple Fast
Space-Efficient Statistically Good Algorithms

for RandomNumber Generation
Melissa E. O’Neill

September 5, 2014

Abstract

This paper presents a new uniform pseudorandom number generation scheme
that is both extremely practical and statistically good (easily passing L’Ecuyer’s
TestU01 suite [29]). It has a number of important properties, including solid
mathematical foundations, good time and space performance, small code size,
multiple random streams, and better cryptographic properties than are typical
for a general-purpose generator.

The key idea is to pass the output of a fast well-understood “medium quality”
random number generator to an efficient permutation function (a.k.a. hash
function), built from composable primitives, that enhances the quality of the
output. The algorithm can be applied at variety of bit sizes, including 64 and
128 bits (which provide 32- and 64-bit outputs, with periods of 264 and 2128).
Optionally, we can provide each b-bit generator with a b−1 bit stream-selection
constant, thereby providing 2b−1 random streams, which are full period and
entirely distinct. An extension adds up to 2b -dimensional equidistribution for a
total periodof2b2b . The constructionof thepermutation functionand theperiod-
extension technique are both founded on the idea of permutation functions on
tuples.

In its standard variants, b-bit generators use a 2b/2-to-1 function to produce
b/2 bits of output. These functions can be designed to make it difficult for an
adversary to discover the generator’s internal state by examining its output, and
thus make it challenging to predict. This property, coupled with the ability to
easily switch between random streams, provides many of the benefits provided
by cryptographically secure generators without the overheads usually associated
with those generators.

1 Introduction

Random number generation is important throughout computer science. It is a key
element to a huge number of areas, including global optimization, computational
creativity, modeling and simulation, robotics, games, andmanymore besides. The
correctness or performance of an algorithm can critically depend on the quality of
the random number generation scheme it uses; its competitiveness can depend on
the speed of its generator; and sometimes other criteria, such as security, matter even
more. In short, generator quality matters and quality has many dimensions.

The idea of solving problems using machine-generated random numbers has
been with us since 1949, being first applied by a team at Los Alamos (led by Nicholas
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Figure 1 Almost all generators in widespread use don’t survive very minimal statistical
scrutiny from TestU01 [29]. Even one failure indicates a problem.

Metropolis and including John von Neumann) that needed to model problems in
physics [38]. In the years that have followed, there have been numerous advances in
the area (and some horrendousmissteps, such as the RANDUgenerator [21]), yetmore
than sixty years later, with random number generators in widespread use, there has
been no single random number generator that provides all the properties we might
consider valuable.

The current state of affairs is one of islands: there are the fast generators, but the
fast ones mostly aren’t statistically good. There are the statistically good ones, but
they’re mostly not fast. If you can find one that manages to be fast and statistically
good, it won’t be even remotely secure (i.e., its past and future output can be trivially
predicted after observing only a few outputs). And if we add additional criteria, such
as space usage or code size, to the mix, you are completely out of luck.

We will examine these criteria in depth in Section 2, but as a prelude to that, let us
use the highly regarded TestU01 statistical test suite [29] to observe that today, many
of the generators in widest use cannot withstand evenminimal statistical scrutiny,
sometimes failing statistical tests after generating only a few thousand numbers. Take
a look at Figure 1—perhaps one of your favorite generators didn’t do as well as you
would have hoped!1 (The graph uses a log scale because failing even one statistical
test is a significant problem. The combined tests require less than fifteen seconds to
run.)

For years it has seemed that compromise was inevitable, and no one would be
entirely happy. Academics would despair at the statistically weak generators that
practitioners use, practitioners would shake their heads at the slow, or otherwise
impractical, generators that academics propose, and cryptographers would wonder
when someone would finally pay at least some attention to security.

This paper introduces a new family of generators that sets a new standard for com-
1 In Figure 1(b), TestU01’s linear complexity test [5, 9, 29] is run at sizes 5000, 25000, 50000, and 75000

and usually completes in under a second. These tests are discussed in more detail in Section 2.1.2, which
also discusses the entire process of applying statistical tests.
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bining desirable properties. Pleasantly, this new generation scheme applies a simple
insight to a widely used technique. At its core, it is the idea of using a randomized
algorithm to enhance randomness. Variations on the idea have been tried in the past
(see Section 9 for related work), but the particular way randomization is achieved
is new. I hope that by the end of the paper you will agree that the idea is obvious in
retrospect.

1.1 Claims and Contributions

This paper introduces the PCG family of random number generators and the tech-
niques that underlie them. In order to do so, it also articulates in detail (in Section 2)
the desirable properties of a random number generator including performance, cor-
rectness, uniformity, and unpredictability, as well as soundmathematical grounding.
It also describes some less well-known desirable features, such as k -dimensional
equidistribution and seekability (a.k.a. jump-ahead).

With those criteria articulated, the paper then

• Describes a new permutation technique, founded on the idea of permuta-
tion functions on tuples, that can dramatically improve the output quality of a
medium-quality random number generator while preserving important qual-
ities such as uniformity. Although in this context the technique is applied to
improving a random number generator, it has broader applications, including
hashing.

• Applies that technique to the specific case of a base generator with weak sta-
tistical properties but other desirable ones (specifically, a linear congruential
generator), and enumerates somemembers of the PCG family, including several
that are simultaneously extremely fast, extremely statistically good, and extremely
space efficient.

• Applies the technique in such away that permutations cannot be easily inverted,
making the generation schememuch harder to predict than most mainstream
generators, which are typically trivial to predict. (But PCG has not had the level
of scrutiny required to be seriously considered for use as a cryptographic stream
cipher!)

• Provides a low-cost period-extension technique, founded on the same ideas,
that allows huge periods and k -dimensional equidistribution for arbitrary k .

The name for the family, PCG, stands for permuted congruential generator, combining
both concepts that underly the generation scheme, namely permutation functions on
tuples and a base linear congruential generator.

But in addition to describing the PCG family, it is also necessary to appraise its
performance. To further that goal, the paper

• Develops a model for the performance of an ideal uniform random number
generator with b bits of state, including the notion of the point at which such a
generator becomes overtaxed and the constraints of uniformity make it unable
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to deliver truly random behavior. (The presentation includes a generalized
solution to the birthday problem which may be useful in other contexts.)

• Using information about the TestU01 suite and the above model, determines an
approximation of the point at which any uniform generator, even an ideal one,
could be expected to fail TestU01’s statistical tests.

• Draws on the work of L’Ecuyer & Simard [29] to articulate a powerful way to
quantitatively compare the statistical performance of different random number
generation schemes capturing the concept of headroom to pass more stringent
tests in the future.

• Uses the above statistical-performance comparison scheme, as well as time and
space performance, to contrast PCG generators with existing ones.2

It also reviews some of the well-known (and less well-known) properties of linear
congruential generators, both their flaws and some of their highly desirable properties.

2 Desirable Properties

In this section, we will examine some of the properties that users of random number
generators might reasonably hope for, namely, good statistical properties, good math-
ematical foundations, lack of predictability, cryptographic security, good time and
space performance, small code size, multiple independent streams, a sufficiently long
period, k -dimensional equidistribution, and a power-of-twomodulus. In each case
we’ll examine what that property is, why it matters, and how well a representative
selection of random number generators achieve each goal.

Although not all users require all these properties, all other things being equal,
the more of these properties a random number generator can provide, the better. The
PCG family, which we will discuss in subsequent sections, will provide them all.

2.1 Statistical Qualities

Perhaps the most obvious property a random number generator should satisfy is that
it should “be random”, but delineating exactly what this most fundamental property
means is tricky [27], given that pseudorandom number generation typically uses
deterministic algorithms. Generally speaking, we usually interpret this property to
mean that a random number generator should conform to statistical expectations
regarding random systems. These properties can be explored both mathematically
and experimentally.

Mathematical properties can allow us to speak with authority about the behav-
ior of a generator without needing to run it. Statistical properties that aren’t easily
determined through mathematical reasoning can be tested by experiment, using

2 Although I have included the most widely used and best performing existing generators, it would
not be practical for me to contrast all prior work. Even the generators I do include are not all discussed
in every section.
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the mathematics of random systems to define expected behavior. In the next two
subsections, we’ll examine each of these properties.

2.1.1 Theory: Period & Uniformity

The mathematical characteristics of a random number generator matter a good deal,
because they directly relate to the confidence we can have in it. Various authors
[27, 29, 21] have (rightly!) admonished would-be inventors of new random number
generators not to simply assemble an arbitrary collection of software gizmos in an
unprincipled way and hope for the best, because doing so risks the later discovery
that the generator has systemic bias or is broken in some other way.

Themost fundamentalmathematical concept underlying pseudorandomnumber
generation is that ofperiod. Any deterministic algorithmexecutedusingfinitememory
must have finitely many states, and thus any random number generation algorithm
must have a fixed period, after which it will repeat (or, as a rarely used alternative,
just stop). It is usually necessary to approach period characterization mathematically
because when periods become large, empirical verification becomes impractical.

The concept of uniformity builds on the notion of a fixed period. Uniformity
requires that after a generator completes a full period all outputs will have occurred
the same number of times. If a generator is uniform, we are assured that over the long
term, it lacks bias.

Mathematical reasoning can allow us to make determinations about the unifor-
mity of a random number generator without ever needing to see its implementation
or run it. For example, let us consider a case where we can show that a generator must
lack uniformity in its output. Consider a generator with b bits of state, but where one
of the 2b possible states is never used, (perhaps because the implementation must
avoid an all-bits-are-zero state). The missing state would leave the generator with a
period of 2b − 1. By the pigeonhole principle, we can immediately know that it cannot
uniformly output 2b unique b-bit values. Moreover, if we desire k -bit values (where
k < b), there will still be a size mismatch to overcome. (This issue arises in practice
with linear-feedback shift-register generators [44]—the foundation for a large class
of generators—limiting their use at small bit sizes unless additional remediation of
some kind is performed.)

2.1.2 Practice: Empirical Testing, and Preexisting Generators

The saying “In theory, there is no difference between theory and practice. But, in
practice, there is.” certainly applies to random number generation.3 The insights
provided by mathematical analysis, while immensely valuable, are insufficient to
verify the performance of a randomnumber generator—current analytical techniques
can reveal flaws, but they cannot fully characterize the required properties. Empirical
testing is required, using tests that are themselves founded on a mathematical under-
standing of the behavior of random systems. In practice, empirical tests have felled

3 Although similar sentiments have been uttered by many, this variant of the saying is usually at-
tributed to Jan L.A. van de Snepscheut.
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Figure 2 Combined test failures for Crush and BigCrush from TestU01 for a number
of common generators. Zero failures are desired. Many well-respected generators fail.
Despite their flaws, LCGs actually pass at larger bit sizes.

random number generators with impressive mathematical credentials [29].
In 2007, L’Ecuyer & Simard [29] made a very significant contribution to the world

of random-number–generator testing when they created the TestU01 statistical test
suite. Other suites, such as Diehard [33], had existed previously, but TestU01 (which
included a large number of previously independently published tests, and applied
them at scale) vastly increased the scope and thoroughness of the testing process.
L’Ecuyer & Simard used their tests to review existing generators (something we will
reprise in a much more abbreviated way momentarily), and the results were sobering
for the field, because many well respected generators did not pass.

Test suites such as TestU01 work by performing some statistically well understood
task using a candidate generator and then checking the plausibility of the results.
Much like experiments in other fields of science, these results typically produce a
p-value, but whereas scientists usually desire results where the null hypothesis—that
the observations were merely due to chance—is ruled out, we desire the opposite, a
result confirming that the observed behavior is consistent with chance.

Back in Section 1, we saw (inFigure 1) howTestU01’sSmallCrush test battery revealed
flaws in a number of well-used generators in mere seconds; now we will continue to
illustrate the profound impact of TestU01. Figure 2 shows the number of test failures
running the Crush and BigCrush batteries on a number additional generators. (L’Ecuyer
& Simard [29] and others have considered manymore, my intent here is just to pro-
vide the reader with a glimpse of the landscape.) Following the advice of Vigna [45],
the counts reflect failures for the generators both used normally and with their bits
reversed; 64-bit generators have both their high 32 and low 32 bits tested.

Crush usually takes about an hour to run, whereas BigCrush takes about six hours.
Interestingly, these intensive batteries include some tests that can be run quickly at
small sizes, but were excluded from SmallCrush, presumably to keep the number of
tests performed small. In particular, as Figure 1(b) showed, the “linear complexity” test
[5, 9] can actually find nonrandom behavior in the Mersenne Twister (a.k.a., mt19937)
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[35], Wellrng512a [41], Taus88 [23], LFSR258 [26], Ecuyer1988 [22], and all sizes of the
unaugmentedXorShift [34] generators in less thanfive seconds, using fewer than 75,000
generated numbers—sometimes many fewer. All of these generators were created
by renowned figures in the world of random number generation, appeared in well-
respected peer-reviewed venues, and all had impressive mathematical credentials,
yet they cannot withstand five seconds of empirical scrutiny with TestU01. Quite
unsettling!

Also of note,RanQ1 [42] andXorShift* 64/32 are essentially the exact same generator,
yet the former fails the test suite and the latter passes. The difference is that the
former markets itself as a 64-bit generator and fails because its low-order bits are
weak, whereas the latter only returns the top 32 bits. The method that underlies this
generator is notable because it follows a similar strategy to the one I will advocate in
this paper: it uses a generator with known weaknesses (XorShift), and then applies an
improvement step to the numbers it generates.

Finally, on the far right we have three different sizes of linear congruential gener-
ator [30] with a power-of-two modulus, using constants suggested by L’Ecuyer [25].
Here we discover something that may surprise some readers: even though linear
congruential generators were strongly represented in the very poor generators we
saw in Figure 1, they actually can do well in empirical tests, provided that we give
them enough state bits. Note that this property is not a foregone conclusion for any
generator; in particular, generators that fail the “linear complexity” test appear to fail
it at all bit sizes. Linear congruential generators are not without serious statistical
issues (which we will examine in Section 4), but if you began reading this paper with
the simplistic belief that “linear congruential generators are bad”, perhaps that belief
is starting to be eroded.

Let’s review where we stand at this point. Only a small number of generators
survive empirical testing, and the generators that are most widely used all fail. But
thus far, we have only articulated one dimension of the desirable properties of a
random number generator, and there are several more to cover.

2.2 Predicability, Repeatability, and Security

Another “natural” property a reasonable personmight expect from a source of random
numbers is a lack of obvious predictability. A die would hardly seem random if, when
I’ve rolled a five, a six, and a three, you can tell me that my next roll will be a one.

Yet because the algorithms that we are concerned with are deterministic, their
behavior is governed by their inputs, thus they will produce the same stream of “ran-
dom” numbers from the same initial conditions—wemight therefore say that they are
only random to an observer unaware of those initial conditions or unaware of how
the algorithm has iterated its state since that point. This deterministic behavior is
valuable in a number of fields, as it makes experiments reproducible. As a result, the
parameters that set the initial state of the generator are usually known as the seed. If
we want reproducible results we should pick an arbitrary seed and remember it to
reproduce the same random sequence later, whereas if we want results that cannot
be easily reproduced, we should select the seed in some inscrutable (and, ideally,
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nondeterministic) way, and keep it secret.
Knowing the seed,wecanpredict theoutput, but formanygenerators evenwithout

the seed it is possible to infer the current state of the generator from its output. This
property is trivially true for any generatorwhere its output is its entire internal state—a
strategy used by a number of simple random number generators. For some other
generators, such as theMersenne Twister [35], we have to go to a little more trouble and
invert its tempering function (which is a bijection; see Section 5), but nevertheless
after only 624 outputs, we will have captured its entire internal state.

Predictability has security consequences, because it allows a variety of possible
attacks, including denial of service attacks [8]. If the generator is invertible, once
we know its internal state, we can also run it backwards to discover the random
numbers it generated in the past, potentially leading to severe security compromises
[13, 15]. In contrast, cryptographically secure generators are not invertable. The only
cryptographically secure generator in our sampling is Arc4Random from OpenBSD
(which is equivalent to the trade-secret RC4 algorithm from RSA Security), although
other, more-recent secure generators perform similarly (see Section 9). While security-
related applications should use a secure generator, because we cannot always know
the future contexts in which our code will be used, it seems wise for all applications to
avoid generators that make discovering their entire internal state completely trivial.

Onemightwonderwhymore generators don’t routinely keepmore of their internal
state to themselves. One answer is speed—outputting half as many bits could be seen
as halving their speed.

2.3 Speed

Time performance is important for two reasons. If an algorithm makes heavy use
of a random number generator, obviously its time performance will depend on the
performance of its generator. Similarly, programmers must often choose between a
randomized algorithm or a nonrandomized algorithm, and in those situations gener-
ator performance can influence their choice. For these reasons, we desire generators
that are fast.

Figure 3 shows the time performance of the generators we considered in previous
sections running an application that makes heavy demands on its random number
generator—SmallCrush from the TestU01 suite [29].4 The lower part of the bars rep-
resents the amount of time spent performing statistical checks and stays essentially
constant regardless of the generator being tested; the upper part of the bar is the time
spent in generator being tested. To facilitate comparison with Figure 2, the generators
are listed in the same order, but to make the comparison easier the lower part of
each bar is shaded differently depending on whether that generator passes or fails
BigCrush—if you’re viewing the graph in color, the ones that pass are shaded green.

Many of the generators that pass BigCrush are slow, but there are some generators
that have relatively good time performance while giving acceptable statistical perfor-
mance. In particular, XorShift* 64/32 performs well,5 but perhaps some readers are

4 Full details of test setup andmethodology are given in Section 10.
5 There are other XorShift-based generators that perform similarly [45, 46], but XorShift* 64/32 works
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Figure 3 Time performance of different generators running SmallCrush. Only a few of
the generators that pass BigCrush are fast. The shaded lower parts of the graph represent
the fixed overheads of the test suite—the shading also highlights the seven generators
that pass BigCrush (as a reminder).

again surprised at the performance of linear congruential generators. LCG 96/32 is
the fastest generator that passes all tests (if we needed 64 bits of randomness, LCG
128/64 would be the winner, but this application doesn’t need 64 bits, so generating
them is thus a waste of time). Also, although it is statistically very weak, the king of
speed is LCG 32, running considerably faster than any of the other generators (240
times faster than the slowest generator, RanLux48).

Readers with lingering concerns about linear congruential generators might be
pleased to know that there is a reason why wemight prefer XorShift* 64/32 over LCG
96/32—it requires less space, which is our next topic for discussion.

2.4 Space, Period, and Output Range

Although most generator implementations require a constant amount of memory to
store their state, the size of that constant matters. If an algorithm uses its own local or
embedded random number generator, the space used to represent the state of the
generator will contribute to the space overheads of the algorithm. Space usage also
influences whether it seems wise to use several separate generators at once.

In addition, space usage can have an impact on speed. If the entire state of a
random number generator can be represented in a single processor register, we may
reasonably expect it to offer performance advantages compared to a generator that
requires hundreds or thousands of bytes of memory to represent its state.

Figure 4 shows the space usage our sampling of preexisting random number gen-
erators; notice how widely different they are in howmuch space each uses (especially
given the log scale!), and how little correlation there is between generator size and
empirical performance (once again, the seven generators that pass TestU01’s BigCrush
battery are shaded differently (in green if you’re viewing the graph in color).

as an acceptable placeholder for them. These other generators are discussed briefly in Section 9.
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Figure 4 Space usage of different generators. As with Figure 3, the seven generators
that pass statistic tests are shaded differently, but here the group is divided in two—four
generators that pass TestU01 but have some disuniformity when used as 32-bit generators
are shaded differently. Only a few of the generators that pass BigCrush are modestly
sized.

KnuthB [20, 3], one of the algorithmsmandated by the C++11 standard library, taken
from the previous edition of Knuth’s Art of Computer Programming (but removed
from the current edition [21]) is particularly disappointing; we had already seen that it
is slow, and it fails many statistical tests, but now we see that it is also huge.

In contrast, you may now feel a little more charitable to Hellekalek1995 [16], an
inversive generator; perhaps it is unreasonable to expect it to perform well in Crush or
BigCrush with only 32 bits of state? Perhaps we ought to be delighted that it actually
passed SmallCrush? We will address this question in Section 3.2.

2.4.1 The Effect of Period on Output Range and Uniformity

Although a generator with b bits of state can represent 2b distinct states for a period
of 2b , some generators have fewer distinct states and a smaller period. For example,
XorShift and XorShift* (and other generators, such as theMersenne Twister, that can be
seen as primarily employing a linear-feedback shift register) have a period of 2b − 1,
and likewise generators based on arithmetic modulo a large prime will also have a
non–power-of-two period. In Figure 4, Ran and the rightmost two LCG generators are
the only ones that both pass BigCrush and have a power-of-two output range (they are
thus shaded slightly differently from the other generators that pass this battery).

A power-of-two period (or a period divisible by a suitable power of two) is useful
because it makes it trivial to have a uniform power-of-two output range. In practice,
many applications need a random stream of x-bit values, for some x , and thus an
output range of 2r , where r ≥ x , is highly desirable; r = 32 and r = 64 are particularly
useful.

A non–power-of-two output range or period can add challenges. For example,
MRG32k3a [24], a generator with some positive properties (good statistical perfor-
mance and long period) has an output modulus of 232 − 209, making it ill-suited for
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generating 32-bit integers—209 values will be never produced. Although unfortunate,
such issues need not be a fatal flaw. There are a variety of fixes, including throwing
away output or adding additional generators, but both techniques require additional
time, space, or both. In cases where the output range is satisfactory and the only issue
is the generator’s period, a common strategy is to have b � r and the dismiss the
disuniformity as “inconsequential”.

A similar dismissal approach applies toArc4Random, which has 256!×2562 ≈ 21700

possible internal states, but has a period that varies depending on its initialization.
Mister & Tavares [39] discuss the period of Arc4Random’s underlying RC4 algorithm in
depth, and also claim that it exhibits bias, a nonuniformity claim confirmed by Basu
et al. [2], although no bias is detected by TestU01.

2.4.2 The Necessity of a “Large Enough” State Space and Period

If the period of a generator is too short, it could repeat itself while in use, which is
undesirable. A larger state allows for a longer period because it allows more distinct
states to be represented, but we quickly reach a point of diminishing returns. For
example, given a choice between a generator with a period of 2128 and one with 2256,
we might do well to realize that if we had a trillion computers each examining one
numberper nanosecond, itwould requiremore than tenbillion years tomostly explore
the period of the 2128 generator. (Even a period as “small” as 256 would take a single
CPU core more than two years to iterate through at one number per nanosecond.)

Long periods are sometimes advocated to support multiple random-number
streams, a property we will address separately in Section 2.5.

2.4.3 The Importance of Code Size

Beyond the space used to represent the state of the generator there is also the space
required for its code. Again, this space will be a constant, but the amount of space
used can influence the speed of program execution by influencing cache usage and
opportunities for function inlining.

Also, from a very practical perspective, the longer the code, the more likely it
is to contain an implementation error. (From personal experience, I can say that
implementation errors in a random number generator are challenging because they
can be subtle, causing a drop in overall quality of the generator without entirely
breaking it.)

2.4.4 A Summary of Size Issues

Thus, we desire a generator that uses enough space to provide a reasonable period
for whatever application have in mind. Beyond that it is preferable to use as little
additional space as possible, both for data and for code.
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2.5 Seekability, Streams, and k-Dimensional Equidistribution

Let’s turn to a few remaining properties that are useful for some applications: seeka-
bility,multiple streams, and k -dimensional equidistribution.

2.5.1 Seekability

Sometimes it is convenient if we can easily “jump ahead” an arbitrary k in the random-
number sequence. For example, suppose we have a large simulation with two phases,
where each phase requires 236 random numbers. Wishing to be able to reproduce
the results, we note the initial seed. After running the first phase, we discover that
a mistake was made in the setup for the second part. It would be nice if we could
rerun the second part without needing to rerun the first, but doing so requires that
we advance the generator 236 steps. We would thus prefer to be able to advance the
generator k steps without it takingO(k ) time.

We say that a generator that provides a fast jump-ahead-k operation is seekable.
Because generators are cyclic, if you jump ahead far enough you end up going around
again, so we can also use jump-ahead to jump backwards.

Thanks to theirmathematical foundations,most of the randomnumber generators
we’ve discussed actually are seekable, typically in O(log k ) time. The papers that
describe them do not always explicitly state how to do so, nor do their standard
implementations always provide the feature, however—wewill see an example of how
seekability can be provided in Section 4.3.1.

In contrast, many cryptographically secure random number generators are not
seekable (over the long term) by design—we don’t want people to be able to use a
backward jump to discover numbers that they produced in the past. (Although a
seekable generator can also prevent backward jumps by explicitly obliterating its state
once its task is complete.)

2.5.2 Multiple Streams

If we wish to usemultiple instances of a randomnumber generator there is a potential
hazard: unintended correlation between their outputs. For example, if we accidentally
allow them to have the same internal state (perhaps we foolishly seeded both with
the current time in seconds!), they will output the exact same numbers, which will
hardly seem random.

One approach to providing streams to is demand a larger period (and thus larger
state space) and then segment that period into areas designated for different streams.
But, as we will see in Section 4.3, some generators can provide multiple streams at
essentially no cost, without increasing the state space of the generator.

2.5.3 k-Dimensional Equidistribution, Monkeys, and Shakespeare

Another common use case for a random number generator is to provide points in a
k -dimensional space, for some k . In the same way that we would like to avoid bias in
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the individual numbers a generator produces, we should also desire to avoid bias in
the pairs (or triples, etc.) that it produces.

Many users are happy to know that a generator is merelywell distributed across
k dimensions but some users would prefer a much stronger property analogous to
uniformity: that over the full period of the generator, every possible k -tuple will occur,
and it will occur the same number of times.

An example from popular culture highlights this concept. There is a saying, pop-
ularized by Douglas Adams [1] amongst others, that if you had an infinite number
of monkeys typing on an infinite number of typewriters, they would produce all the
great works of literature (and an inconceivable amount of dreck, too). We can cast
that scenario into the world of random number generation. Suppose we have a gen-
erator that outputs 32-bit values (i.e., four bytes), and we grab its output in chunks
of 16384 values at once. Each chunk will thus be 64 KB in size (which is 219 bits). If
we demand that the generator be 16384-dimensionally equidistributed, we can know
that all possible 64 KB sequences of data must show up eventually over the full period
of the generator, which must be at least 2219 . Within that immensely huge collection
of outputs lies every valid 64 KB zip file, some of which will contain great literature
such as Hamlet. Thus, to make the saying more accurate, you don’t need an infinite
number of monkeys (k -tuples) to produce the works of Shakespeare, 2219 is ample.

An argument for k -dimensional equidistribution (and uniformity) goes like this:
suppose you went and bought a lottery ticket every week, how would you feel if you
discovered that the clerk at the store was handing you a fake ticket and pocketing the
money because, at 259 million to one, you were never going to win anyway. Youmight,
rightly, feel cheated. Thus as unlikely as any particular k -tuple might be, we ought to
have a real chance, however remote, of producing it.

An argument against providing k -dimensional equidistribution (for large k ) is
that infinitesimal probabilities aren’t worth worrying about. You probably aren’t going
to win the lottery, and your monkeys won’t write Shakespeare. At least not without
our rigging the game, something we’ll discuss how to do in Sections 4.3.3 and 4.3.4.

2.6 Summary

We’ve now seen quite a litany of desirable properties, and assessed a number of
popular, historically significant, andwell regarded generators against those properties.
Althoughmany of the generators have their niche—sometimes a sizable one—none
offer all the properties we might reasonably desire.

Oneof the best performingwasXorShift* 64/32, which adds a simplemultiplicative
improving step to the rather poor performing XorShift 64/32 generator.

But if you began reading the section with the belief that “linear congruential
generators are bad” (a fairly widely-held belief amongst people who know a little
about random number generation), youmay have been surprised by how well they
performed. We’ve seen that they are fast, fairly space efficient, and at larger sizes
even make it through statistical tests that take down other purportedly better genera-
tors. And that’swithout an improving step. We will discuss such a step in Section 5,
but before we develop better generators, we need to develop better techniques for
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comparing generators that pass statistical tests.

3 Quantifying Statistical Performance

In the previous section we saw the vital importance of empirical testing, and how
the TestU01 suite [29] had revealed statistical flaws in many previously well-respected
generators. But although failing statistical tests can be a serious blow, we are left with
the question of what we have learned when a generator passes a test battery. For
example, if two generators A and B both pass TestU01’s BigCrush battery, we might ask
ourselves whether they are both equally good? If that were the case, it would mean
that the linear congruential generators we saw passing BigCrush in Figure 2 were “just
as statistically good” as any other generator that passes BigCrush, a state of affairs that
would deeply trouble some readers.

This section presents a way to go beyondmere pass/fail characterization to get a
quantitative measure of how good the statistical performance of a random number
generator is. The key observation is that as we limit the amount of state a random
number generator has, we make it harder for it to perform well. This property doesn’t
just apply to some generators, as we shall see, it applies to even themost ideal uniform
generator (as an absurd example, no generator, no matter how ideal, could perform
well generating numbers with a single bit of state). Thus one way to determine the
“statistical goodness” of a generation scheme is to reduce the size of its state to the
point where it fails the test(s), and observe how close its pattern of failure is to the
pattern wemight expect from an ideal generator. In this section, we will develop the
tools necessary to perform such an analysis.

3.1 IdealGeneratorswithFiniteStateMustEventuallyFail StatisticalTests

In Section 2.1.1, we introduced the notion of uniformity as a property we can and
should demand of a deterministic random-number generator with finite state. This
property requires that after a full period, all outputs will have occurred the same
number of times. Uniformity is a generally desirable property because it can rule
out certain kinds of bias, but it has some interesting ramifications—in some ways it
requires a random number generator, even a theoretically ideal one, to be less random
than it might otherwise be. We will see how uniformity (and the fixed-period property
that is a prerequisite) eventually requires all uniform generators to fail reasonable
statistical tests.

Let us consider a uniformgeneratorwithb bits of state and 2b period that produces
r -bit randomnumbers.6 Uniformity requires that by the timewehave iterated through
all 2b states, wemust have produced each of the 2r possible outputs exactly 2b−r times,
and that b ≥ r . For example, if we ask a uniform generator with 32-bits of state to
produce 32-bit random numbers, it can only produce each number exactly once (via
the pigeonhole principle), but in a stream of truly random numbers, numbers can

6 In our discussion, we’ll focus on b-bit generators where the size of the output range is 2r , where
r ≤ b , but the arguments also apply to arbitrary-sized output ranges.
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repeat—rolling a die and getting a six doesn’t diminish your chance of getting a six
on the next roll. A classical statistical problem, the birthday problem, models the
probability of repeats.

In the birthday problem, we want to know how many people we need to have
present for two people to share a birthday (assuming 365 possible birthdays, each
with a 1 in 365 chance of occurring for a particular person). Although youmay realize
immediately that we won’t need to see 365 people, many people are surprised at how
few are required—only 23 for a 50% chance (and 70 for a 99.9% chance). Specifically,
after seeing only 23 people, there will obviously be at least 365 − 23 = 342 birthdays
that we have not seen at all, but it is also likely that two people will share a birthday
because the probability that all 23 people will avoid sharing a birthday is

1 ×

(
1 −

1

365

)
×

(
1 −

2

365

)
× · · · ×

(
1 −

22

365

)
,

which works out to be approximately 0.49 (i.e., 49%).
Figure 5(a) applies the same idea to our random-number–generation example, so

instead of 365 possible birthdays, we have 232 possible 32-bit integers (in general, 2r

possible r -bit integers). The figure shows the situation after we have produced a mere
216 random integers, 0.0015% of the period. The column for “0 appearances” is the
number of 32-bit integers that haven’t shown up at all. The column for “1 appearance”
counts the number of 32-bit integers we’ve seen just once. And finally, “2 appearances”
counts the number of 32-bit integers that we’ve seen occur twice—it is this column
that is forced to be zero for our ideal generator (because every integer can occur only
once), even though we would expect to have seen at least one 32-bit integer repeat
itself by now.

The problem is that with only 32 bits of state, we could only output each 32-bit
integer once. We could instead output some integers twice and some not at all but
that would be biased. To allow numbers to repeat, we need more bits of state than
bits of output. We will consider that case next.

Suppose we decide instead to have r = b/2—in our running example, that will
have us generating 16-bit integers. Each number will appear 2b−r times over the full
period of the generator, so in our example of a generator with 32 bits of state, each
16-bit integer will show up 216 times (i.e., 65536 times). Youmight think that we now
have “birthday issues” taken care of, with each 16-bit integer being able to be repeated
65536 times, and it’s true that we won’t have problems early on, but we aren’t out of
the woods yet. Let’s see why.

One way to envisage this situation is to imagine that inside the generator there is
a bucket for each 16-bit integer it can output. Let’s zoom in on just one, the bucket
of sevens. Initially, the generator has 65536 sevens in the bucket, but every time it
generates a seven as its output, it uses one up. At some point, it will run out of them
entirely and not be able to output seven any more. In fact, by the time the generator
reaches the very last output in its period, all the buckets except one will be empty and
it will have no choice whatsoever about what to output. And that is not random at all!
But that is the condition imposed by uniformity, which insists that when we complete
the period every number has been output exactly 65536 times (to avoid bias).
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Figure 5 Even an ideal uniform generator has limits: if overtaxed it deviates from true
random behavior.

Figure 5(b) characterizes our example generator when we are 99.6% of the way
through its period (specifically, we have only 224 outputs left before we have produced
all 232 outputs). At this point, each 16-bit integer will have been output 65280 times on
average (which is (232−224)/216), but obviously therewill be some randomvariation—
some integers have been produced more, some less. In fact, the variation matches
a Poisson distribution, which is where the curve of the graph comes from (on a log
scale), and thus the standard deviation is approximately 28. If we had a true source
of randomness (unconstrained by uniformity and amount of state) we ought to have
seen quite a few of the 16-bit integersmore than 65536 (i.e., 216) times—that is the
blue/lighter part shown to the right of 216 in the graph, which is the only x-axis label
you need to pay attention to (but if you wonder why the x-axis doesn’t start at zero,
the graph is centered around 65280, the average, and goes four standard deviations to
either side). The take-away from this graph is exactly the same as from the previous
paragraph—as our uniform generator nears the end of its period, it stops being able
to be properly random. And just like Figure 5(a), it is also an instance of a classical
problem in statistics—this time it is the generalized birthday problem.

Although exact solutions to the generalized birthday problem exist [36], for sim-
plicity we can use elementary statistics to model and approximate the solution. Let
x be the expected number of random integers that occur more than 2b−r times (i.e.,
the area under the blue/lighter part of the graph in Figure 5(b)). Using a Poisson
approximation, we have

x ≈ 2r P (v > 2b−r | v ∼ Poisson(n/2r )) = 2r (1 −Q (2b−r , n/2r )),

whereQ is the regularized gamma function. Note that x represents the expected num-
ber of events that cannot occur with a b-bit generator, so we desire a measure of how
likely it is that we should have seen such an event by now—if it is quite unlikely, no one
will notice that those events aren’t there. Again we can use a Poisson approximation
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Figure 6 Amount of usable output for an ideal uniform generator. To avoid being over-
taxed very early in its period, a generator needs several more bits of state than it has bits
of output.

to calculate a p-value, given x as determined above:

p ≈ P (w , 0 | w ∼ Poisson(x)) = 1 − e−x .

Figure 6 shows how we can apply the above formula to gain insight into the be-
havior of even the best uniform generator.7 Figure 6(a) calculates howmany numbers
we can generate before failing the birthday test with a 32-bit generator for different
numbers of output bits (r ), whereas Figure 6(b) assumes we desire 32 bits and shows
what percentage of the period of the generator we can use for different state sizes (b
bits). The figures show values for different p-values, including p = 2−b , which has a
certain appeal (with a period of 2b , it’s nice to be able to observe birthday problem
events that occur with a probability of 1 in 2b ). This choice has another benefit: the
p = 2−b columns of Figure 6(b) remain the same for other values of r—just start the
x-axis labels at r instead of 32.

Summary From this discussion, we have shown that even an ideal uniform genera-
tor with finite state has a statistical test it will fail, and characterized exactly when it
will do so. In essence, a generator “runs out of gas” as we push it close to its period (or
much sooner if it has few bits of state and we insist on it outputting all of it). We call
this situation a generator being overtaxed. We can avoid a generator being overtaxed
two ways; ask for fewer numbers from it, or lengthen its period by adding more bits of
state.

7 A small program, overtax.cpp, provided with the PCG library, solves this equation, allowing you to
investigate these relationships for yourself.
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3.2 An Approximation for Limits on TestU01 Performance

We can use the concepts from the preceding section to approximate the number of
failures we would expect running statistical tests (such as TestU01’s test batteries) on
an ideal uniform b-bit generator. If a test would overtax the generator by using too
much of its period, we can presume it would fail the test because the generator has
been taken into a zone where its ability to appear random is severely compromised.
We will focus on TestU01.

The TestU01 suite is well documented, so we can know for each test in its batteries
howmany bits it uses from each random number, and we canmeasure exactly how
many random numbers it needs. These two pieces of information are exactly what
we need to determine whether or not it might overtax an ideal generator with a given
amount of state.

Using information about TestU01 and the generalized–birthday-problem approxi-
mation from Section 3.1, I calculated, for each test in TestU01, the point at which an
ideal random number generator would have a birthday-problem p-value worse than
1 in 1000, and thereby determined the minimum number of state bits required to pass
each test in the battery. This estimate is conservative because in practice, depending
on the exact characteristics of the test, an overtaxed generator might pass the test
anyway, either by chance or because the test is insensitive to birthday-problem issues.

This information indicates that an ideal generator can reasonably fail SmallCrush
when b < 32, fail Crush when b < 35, and fail BigCrush when b < 36. Thus, in
Section 2.1.2, I had indeed put Hellekalek1995 in a contest it couldn’t hope to win—and
its success in passing SmallCrush with only 32 bits of statewas an achievement to be
proud of.

In addition, we can now surmise that in theory an ideal generator could pass
BigCrush using only 36 bits of state, but none of the generators we saw in Section 2.1.2
came close to this performance.

3.3 A Space-Based Metric for Generator Comparison

As we saw in Section 3.1, the point at which ideal generators start to fail statistical tests
is closely connected to their period and howmany bits of state they have. Empirical
evidence suggests the same is true for real-world generators, as we will see momentar-
ily. If a generator is failing statistical tests, giving it more state might allow it to pass,
and, similarly, if it is passing the tests, forcing it to get by with fewer state bits can
make it fail. This notion gives us a metric for determining whether one generator is
better than another—give each one enough bits to pass statistical tests (and discard
any that can’t pass at any bit size), and then “put the screws on them”, testing them at
smaller and smaller state sizes to find the point at which they fail, as they eventually
must.

If generation algorithm A passes a statistical test using b bits of state, and gen-
eration algorithm B requires at least b + k bits of state, A is better—because if both
are used in practice at the same size, A will have k bits more headroom. For example,
suppose we will devote 64 bits to random number generation and we are trying to
decide between two generators. If we have a test battery that A can pass with 40 bits
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Figure 7 BigCrush + Crush test failures at different bit sizes (32-bit output).

of state, but B needs 63 bits to pass, then A has 24 bits more than it needs to pass our
test, whereas algorithm B has only one additional bit. With only one bit of headroom,
we can be reasonably concerned that if we gave B a slightly larger test (e.g., about
double the size), it might not pass. Whereas we would hope that A would require a
much larger test (about 224 times larger) before it would be likely to fail.

This reasoning assumes that real-world generators behave analogously to ideal
ones (e.g., needing 50% more state than an ideal generator, but otherwise being
overtaxed in a similar way), but the empirical evidence given here and elsewhere [29]
suggests that they do behave this way. L’Ecuyer and Simard [28] explored birthday-test
performance for a number of real-world generators, varying the size of a single test
and keeping generator-state size the same. In this paper, wewill examine the empirical
performance of a small number of generators in the more comprehensive Crush and
BigCrush batteries, keeping the test the same and varying bit size.

Figure 7 shows Crush and BigCrush performance for three random-number–gen-
eration algorithms that are straightforward to run at different sizes: LCG, XorShift,
and XorShift*. This graph supports some intuitions that may have been building
since Section 2.1.2. Specifically, LCG is quite poor at small bit sizes, much worse
than XorShift, but it improves fairly quickly—at 88 bits of state LCG passes BigCrush. In
contrast, XorShift begins from a better starting point but is never able to fully overcome
its weaknesses as we add more bits of state. XorShift* outperforms both—a 40-bit
XorShift* generator can pass BigCrush. Thus, if we had 64 bits to devote to state, the
LCG and XorShift algorithms would be terrible choices, but XorShift* would be a good
one. It will pass BigCrush with 24 bits of headroom—in other words, 24 bits more than
it needs—and thus gives us reason to hope that it could withstandmuchmore intense
testing (although there is always the risk that an entirely new test could be developed
that checks a previously untested statistical property and reveals a flaw).

XorShift* is a small change to XorShift—it permutes XorShift output using a multi-
plicative improvement step (discussed in more detail in Section 5.5.2). This simple
change pushes it very close to the performance of an ideal generator. In fact, you
may notice that at some points on the graph it actually exceeds our model of ideal
performance. Recall that the theoretical model assumes that the tests TestU01 applies
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will detect all deviations from true randomness, but in practice some tests may be
oblivious to birthday-problem–related issues.

XorShift*would even be highly usable at 48 bits. Or at least it would be if its “minor”
nonuniformity from a non–power-of-two period didn’t start to become a problem
at small sizes (an issue we mentioned previously in Section 2.4.1). In contrast, the
statistical performance of the LCG scheme was less stellar—in a contest between LCG
and XorShift, LCG wins, but compared to XorShift* it loses.

3.4 Summary

We now have a new concept, headroom, that quantifies statistical performance in
pass/fail empirical statistical tests. Headroom is the difference between the number
of bits of state a particular generation scheme requires to pass a given statistical test
(or test battery) and the number bits that a given instance of that scheme actually
has. Thus, a 128-bit LCG generator has 40 bits of BigCrush headroom because the LCG
scheme can pass BigCrush with 88 bits of state. We have also discovered the concept
of a theoretical limit on the minimum number of state bits that are required to pass
a given statistical test (or test battery). In the case of TestU01’s BigCrush battery, that
minimum is 36 bits. Thus, although wemight be even less impressed with generators
that seem to require vastly larger state to pass BigCrush, we should not be especially
impressed at the performance of the LCG scheme because its performance is very far
from ideal. On the positive side, linear congruential generators do have other good
properties, which we will review in the next section.

4 Linear Congruential Generators

Linear congruential generators are one of the oldest techniques for generating a pseu-
dorandom sequence of numbers; being first suggested by Lehmer [30]. Despite its
age, the technique has had both enduring popularity, as well as a certain amount of
ignominy (thanks a lot, RANDU [21]).

In this section, we will present the definition of LCGs and enumerate some of their
well-known (and less well known properties). We will see that LCGs have statistical
flaws, but also that they have almost all of the desirable properties that we discussed
in Section 2. Because of their positive qualities, LCGs will form a key part of the PCG
generation scheme (the “CG” in PCG).

4.1 Definition and Basic Properties

The generator uses a simple recurrence to produce random numbers:

Xn+1 = (aXn + c) mod m, n ≥ 0,

where m is the modulus (m > 0); a is the multiplier (0 ≤ a < m); c is the increment
(0 ≤ c < m); and X0 is the starting value, the seed (0 ≤ X0 < m). When c > 0 and
a > 0, we call the generator a linear congruential generator (LCG), whereas in the
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a. A bad LCG b. True randomness c. A “good” LCG

Figure 8 16-bit LCGs versus actual randomness.

special case that c = 0 and a > 0, we call it amultiplicative congruential generator
(MCG), although others often call it a Lehmer generator.

This technique has the potential to be fast given that it only requires three op-
erations, a multiply, an add, and a modulus operation. If m is chosen to match the
machine-word size, the modulus operation can be performed implicitly by the under-
lying hardware, reducing the number of operations to two. If we use anMCG, there
is no need to perform the addition, thus allowing each step of the generator to be
performedwith a singlemultiply. In contrast to themachines ofmany years ago, CPUs
in widespread use today can performmultiplies very quickly (e.g., at a throughput of
one per cycle [14]), explaining the excellent performance we saw in Figure 3.

LCGs and MCGs are also space efficient; they only need enough space to store
the previous value of the recurrence. In the case where m = 2k (which is convenient
for k -bit machine words), the maximum period of the LCG variant is 2k whereas the
maximum period of the MCG variant is 2k−2 [21].

LCGs and MCGs are conceptually simple, well understood, easy to implement
(provided m = 2k , making overflow a blessing, not a curse), and typically fast. Yet, as
I have alluded to several times already, in some quarters, they have a poor reputation.
Let’s consider why. . .

4.2 Visualizations, Intuition Pumps, and the Flaw in LCGs

Take a look at Figure 8. It provides a visualization of the output of a three would-be
random number generators. The one in the middle probably matches what your
conception of random noise looks like, whereas the two on either side probably do
not.

Before we proceed further, let us discuss how they were made. The output of a
random number generator is grouped into pairs, which are then used to provide the
(x, y) coordinates to plot a point on a 28 × 28 grid. Each picture (even later ones that
seem very sparse), plots 215 points, consuming 216 random numbers. The diagram
also captures temporal properties of the generator; earlier points are rendered a lighter
gray than later ones (the first point is in 50% gray, so areas where there are no points
at all remain clearly distinguished). Although images such as these (and 3D variants)
are not new, they do not appear to have been given a short and simple name. Let’s
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a. 16-bit LCG b. 17-bit LCG c. 18-bit LCG

Figure 9 The same LCG with different state sizes; using less of the period makes the
crystalline structure much less obvious (although it is still there).

call them randograms.

4.2.1 Randograms as Intuition Pumps

Randograms are informal, but they can nevertheless be useful. You may not feel
absolutely certain that Figure 8(b) is truly random, but it is likely that you are sure that
Figures 8(a) and 8(c) are emphatically not. As such, they drive our intuitions about
what is more or less random.

Aswith other intuitive thinking, we have to exercise caution because our intuitions
can lead us astray (e.g., seeing one LCG look bad in one context and assuming that
all LCGs are bad in all circumstances), so we should never draw conclusions based
on intuitions alone, but they nevertheless have a useful place as a tool. Much of the
theory that underlies LCGs owes its origins to these kinds of intuitions.

Before we move on to that theory, however, let’s take a moment to realize that
the intuitions we gathered from Figure 8 may have overstated the case against LCGs.
Figure 8(c), which is repeated in Figure 9(a), used the entire period of a 16-bit LCG,
something we know (from Section 3.1) to be questionable for even an ideal generator
(and LCGs are not ideal), so wemight wonder what the diagrams would have looked
like with an extra bit or two of state. Figure 9(b) shows 17 bits, and you may still notice
some regularities, but they are somewhat subtle. Regularities are still there in the
output of the 18-bit generator depicted in Figure 9(c), but they are too subtle to clearly
see. We should not be surprised by this result, given what we discussed in Section 2.4
(e.g., Figure 7)—we that know LCGs perform better with more bits.

Thus we have seen that wemust take care in the intuitions we form, andwe should
pay attention to context; if we only see LCGs depicted with poor multipliers or using
their entire period, we may mistakenly believe they are worse than they really are.
Likewise, we should be careful about giving toomuch credit too quickly—even though
Figure 9(c) looks random, flaws are still there.

4.2.2 The Flaw in LCGs

Marsaglia [32] showed that even with the most well-chosen multiplicative constants,
using an LCG to choose points in an n-dimensional space will generate points that
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will lie on, at most, (n!m)1/n hyperplanes. He wrote:

all multiplicative congruential random number generators have a defect—a
defect that makes them unsuitable for many Monte Carlo problems and that
cannot be removed by adjusting the starting value, multiplier, or modulus. The
problem lies in the “crystalline” nature of multiplicative generators—if n-tuples
(u1, u2, . . . , un), (u2, u3, . . . , un+1) of uniform variates produced by the genera-
tor are viewed as points in the unit cube of n dimensions, then all the points will
be found to lie in a relatively small number of parallel hyperplanes. Furthermore,
there are many systems of parallel hyperplanes which contain all of the points;
the points are about as randomly spaced in the unit n-cube as the atoms in a
perfect crystal at absolute zero.

Whenm = 2k there is a further problem. Theperiod of theb th bit of an LCG (where
bits are numbered from the right, starting at one) is 2b , thus although the period is 2k ,
only the high bits are good and the lower order bits exhibit a clear repeating pattern.
For an MCG, the bottom two bits remain fixed, resulting in a period of 2k−2 and bit b
(b ≥ 2) having a period of 2b−2 [25].

On the positive side, at least the flaws in LCGs are very well understood, and (as
we saw in Section 2.1.2) statistical flaws are hardly unique. For example, we saw that
linear-feedback–shift-register–based generators were brought down in statistical tests
(in mere seconds!). I would claim they fail because they have the opposite problem
to that of LCGs—instead of being too regular, I would describe them as “too lumpy”;
output for some sections of the period is decidedly improbable. Moreover, we saw in
Section 3.3 that at least sometimes statistical flaws in a generator have an easy fix (e.g.,
the multiplication step in XorShift*), so there is every reason to be hopeful.

So, for now let us set the statistical flaws to one side in the hope that we can fix
them (we’ll see how in Section 5) and turn to other properties where LCGs fare a little
better.

4.3 TheGoodStuff: Seekability,MultipleStreams,k-DimensionalEquidis-
tribution

LCGsmay have statistical problems, but on the positive side they can provide all of the
auxiliary properties we discussed in Section 2.5, namely seekability, multiple streams,
and k-dimensional equidistribution.

4.3.1 Seekability

Thanks to the simple linear properties of the recurrence, we can actually jump ahead
an arbitrary i steps in the random sequence using the formula

Xn+i =

(
a i Xn +

c(a i − 1)

a − 1

)
mod m .

Brown [4] gives an algorithm that performs this calculation quickly (specifically in
O(log i) steps), without using division, using an algorithm analogous to fast exponen-
tiation.
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4.3.2 Multiple Streams

Although there are rules for the choice of constants [17], if we pick a power-of-two
modulus and a good multiplicative constant, the only constraint on c for a full period
generator is that c is odd and 0 < c < m (or c = 0 for an MCG). Every choice of c
results in a different sequence of numbers that has none of its pairs of successive
outputs in common with another sequence. We can prove this property as follows:
Suppose we had two generators with additive constants c andd that transitioned from
x to the same value y , thus

y = ax + c = ax + d mod m,

and the only solution to this equation is that c = d .
It’s worth noticing that in many programming languages, we can allow distinct

randomnumber generators tohave their owndistinct streamsat zero cost. In languages
like C and C++, we can base the constant on thememory address of the state, whereas
in other languages (e.g., Python), every object has a unique integer id that we can use.

4.3.3 Party Tricks

The above two properties allow us to perform a silly party trick with an LCG. Let’s
assume we’re working with a 64-bit LCG. First, let us observe that

3935559000370003845 × 3203021881815356449 + 11742185885288659963

≡264 2406455411552636960

This equation captures a particular 64-bit LCG as it advances. The first number is one
of Pierre L’Ecuyer’s multiplicative constants for a good LCG [25], the second number
is actually the little-endian encoding of the bytes of “!Thanks,” and likewise the
last number encodes “ Pierre!”. The additive constant is contrived to make the
sumwork. Thus by using a contrived constant, we canmake the generator produce
any pair of two outputs we desire (provided that one is even and one is odd); I have
contrived to make it produce the bytes of “!Thanks, Pierre!”. Using seekability,
we can backstep the generator so that it will produce this output at some arbitrary
point of our choosing in the future, possibly during execution of L’Ecuyer’s test suite,
TestU01 [29].

4.3.4 Very Long Periods & k-Dimensional Equidistribution

Some generators, most notably the Mersenne Twister [35], tout their long period and
k -dimensional equidistribution, so we should consider whether LCGs can provide
these properties.

First, let’s step back for a second and observe (paraphrasing L’Ecuyer [27]) that
these properties alone are trivial to provide. They are true of a simple counter! A
counter of b bits will toil its way through every bit pattern, showing it exactly once, for
a period of 2b . I could thus set aside 1 MB of RAM, use it as a counter, and claim it as a
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262144-dimensionally equidistributed generator with a period of 28388608, but no one
would be very impressed with it.

But this terrible ideadoesprovidea clue forhow tobuild ak -dimensionally equidis-
tributed generator out of k LCGs—treat each generator like a digit in a k -digit counter.
For this approach to work, the generator will need the concept of carry to advance
the the count of its leftward neighbor, but we can use the same approach we use with
ordinary digits—when we hit zero, we advance our neighbor.

Also, you might be concerned that while the rightmost generator/digit counts
up, the others will stay the same—we will have k -dimensional equidistribution but
terrible randomness. But adding one isn’t the only way to count. Imagine a three-digit
counter, counting from 000 to 999; we could add 001 each time, but we could instead
add 111. Observe that the sequence goes

. . . , 888, 999, 110, 221, 332, 443, . . . .

In other words, we advance all the numbers each step, but we perform an additional
advance when carry occurs. In fact, it doesn’t matter how we advance the digits to the
left, so long as we break them out of lockstep.

Thus, if we wished to have a three-dimensionally equidistributed LCG generator,
we could advance all three of them by writing:

state1 = mult * state1 + inc1;
state2 = mult * state2 + inc2*(1 + (state1 == 0));
state3 = mult * state3 + inc3*(1 + (state2 == 0));

and then read out the three values in turn. We could perform the carry-advance with
an extra LCG iteration step, but because all that matters for “advancing the digit to
the left” is performing some kind of extra advance and it doesn’t matter what kind, the
code merely uses an extra increment.

Notice that in the code above each LCG has its own additive constant to create
distinct random streams, otherwise there would be embarrassing synchronicities
between their values. It would have been more random to use distinct multipliers,
too, but it isn’t as critical.

There was nothing special about choosing three-dimensional equidistribution.
We can build a k -dimensionally equidistributed generator for any k , and if the period
of the base generators is 2b , the period of the combined generator will be 2kb . Finally,
although we think of it as producing a k -tuple, we can also think of it as producing k
values each in turn. Thus, if all we care about is having a generator with a long period,
we can use this technique to achieve that goal.

Amazingly, in some ways this scheme actually does better at being k -dimension-
ally equidistributed than the Mersenne Twister does. For example, the Mersenne Twister
cannot generate the all-zeros state, but the Mersenne Twister also struggles to behave
randomly when its state is almost-all-zeros [41]. In contrast, thanks to the distinct
additive constants, our gang of k generators will at some point arrive at an all-zeros
state, but then advance to entirely different positions and continue on their way.

In addition, we can reprise the party trick we saw in the previous section, on a
larger scale (and this time without needing to contrive an additive constant). For
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a. 2 × 8-bit LCGs b. 2 × 9-bit LCGs

Figure 10 Using two tiny LCGs with two-dimensional equidistribution.

example, you could set up 214 LCGs for a total state space size of 64 KB, set all the
states so that it’ll read out a Zip file for Hamlet, and then backstep the generator s
steps. Now, for s steps it will appear entirely random, but then it will suddenly output
a Zip file containing Hamlet, and then return to more conventional random output.8

Figure 10 shows randograms drawn using two tiny LCGs following the above
scheme for equidistribution. Clearly there is blatant structure there, but we shouldn’t
expect much else for such low-quality generators. Also, in the previous diagrams,
we’ve thrown away half the bits, whereas here we’ve used them all andwe are thus only
halfway through the period. Thanks to exact two-dimensional equidistribution, if we
use the complete period we’ll shade the square entirely, with each point occurring
exactly once.

Even though we’ve seen that long periods and k -dimensional equidistribution are
not much of a challenge for LCGs, the structure we can see in Figure 10 reminds us
that they are statistically weak.9

4.4 Summary

Despite their flaws, LCGs have endured as one of the most widely used random-
number generation schemes, with good reason. They are fast, easy to implement,
and fairly space efficient. As we saw in Section 3.3, despite poor performance at
small bit sizes, they continue to improve as we add bits to their state, and at larger bit
sizes, they pass stringent statistical tests (provided that we discard the low-order bits),
actually outperformingmanymore-complex generators. And in a surprise upset, they
can even rival the Mersenne Twister at its principle claims to fame, long period and
equidistribution.

Nevertheless, there is much room for improvement. From the empirical evidence
we saw in Section 3.3 (and the muchmore thorough treatment of L’Ecuyer & Simard

8 If you want to try this trick yourself, don’t forget to allow for the possibility of carry. Odds are that it
won’t happen, but you should check.

9 In addition to the flaws of LCGs themselves, this scheme fork -dimensional equidistribution can add
additional statistical flaws due to the uniformity of the underlying generators from which it is made. We
have glossed over those issues and their remediation because they won’t be a concern for the scheme the
PCG family uses (described in Section 7.1), but, generally speaking, the more bits of state the underlying
generators have, the better.
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[28], who observe that LCGs are only free of birthday-test issues if n < 16p1/3, where
n is the number of numbers used and p is the period), we can surmise that wemay
observe statistical flaws in a 128-bit LCG after reading fewer than 247 numbers (which
is more than BigCrush consumes but nevertheless isn’t that many—an algorithm could
plausibly use one number per nanosecond and 247 nanoseconds is less than two
days).

There are many ways to seek to improve a random number generator. One well-
explored option is to combinemultiple generators, but doing so adds a time and space
penalty. In addition, for a fair comparison, we should always compare at the same
overall bit size—it doesn’t make much sense to compare a combination of four 64-bit
generators against a single LCG struggling along with 64 bits—we should compare the
combined 4 × 64-bit generator to a 256-bit LCG. Because of these issues, we’ll take a
different tack—rather than addmore generators, we’ll improve the one we have.

5 Permutation Functions and k-to-1 Uniform Functions

Several random number generators (e.g., XorShift*, Mersenne Twister) use a final step
to improve the output of a base generator. Instead of just outputting the generator’s
internal state as-is and trying to find a “more random” way to transition from one
internal state to another, they instead adopt a more sophisticated method to turn
the the generator’s internal state into its output. Specifically, they perform a uni-
form scrambling operation, remapping the output in some way so as to enhance its
randomness. The key idea is a permutation function.

A permutation function is a bijective function (i.e., 1 to 1 and onto) where the
domain, range, and codomain are all the same. For example, f (x) = x + 1 mod m
is a permutation function onZm (i.e, integers modulo m), but wemight reasonably
expect that applying such a function would do little tomake a random sequence seem
more random. For our task, we desire permutation functions that scramble the output
in some way.

XorShift* 64/32, for example, applies themultiplicative step of anMCG to improve
its output. It uses a 64-bit multiplicative constant recommended by L’Ecuyer [25]. We
know that this step will act as a scrambling function because it lies at the heart of
another random number generator (in essence, we’re borrowing its trick), and we
can also reasonably hope that this step won’t somehow inject bias because MCGs are
uniform, not biased.

Interestingly, we need have no concerns about bias when applying a permutation
function to an ideal random number generator, becausewhatever the permutation, it
makes no difference to its statistical performance; either way, every possible output
has a 1 in m possibility of showing up (where m is the modulus).

Thus, if we have a pseudorandom number and pass its output through a permuta-
tion function, there are three possibilities:

1. It makes no difference, the statistical properties of the generator are unchanged
(exactly as would happen for a true source of randomness).

2. It improves the statistical properties of the generator, masking its flaws.
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3. It worsens the statistical properties of the generator, exposing its flaws.

Unfortunately, a problem with applying permutation functions (or at least doing
so naïvely) is that we increase the chance that a user might trigger the third option, as
we shall see.

5.1 The Perils of Invertability

Suppose that, excited by the idea of permutation functions, you decide to always
improve the random number generators you use with a multiplicative step. You turn
to L’Ecuyer’s excellent paper [25], and without reading it closely (who has time to
read papers these days!), you grab the last 32-bit constant he lists, 204209821. You
are then surprised to discover that your “improvement” makes things worse! The
problem is that you were using XorShift* 32/32, a generator that already includes
multiplication by 747796405 as an improving step.10 Unfortunately, 204209821 is the
multiplicative inverse of 747796405 (mod 232), so you have just turned it back into
the far-worse–performing XorShift generator! Oops.

Because of their 1-to-1 nature, all permutation functions are invertible, so this
issue applies broadly. Of course, it’s muchmore unlikely that you’ll accidentally invert
the tempering function of the Mersenne Twister, but, as mentioned in Section 2.2, a
hacker might do so entirely deliberately.

Thankfully, there is a variation on permutation functions that makes inverting
themmore difficult—k -to-1 uniform functions.

5.2 Avoiding Invertability: k-to-1 Uniform Functions

If our function is k -to-1 rather than 1-to-1 (i.e., where exactly k unique inputs map
to every available output), there are k possible inputs that could have lead to each
output, leaving anyone hoping to invert the function with k possibilities. As k gets
larger, the concept of a meaningful inverse vanishes.

Functions of this kind are widely used in computer science, usually going by the
name uniform hash functions. In fact, we could stop at this point, just use a linear
congruential generator and produce output by hashing its entire state using a high-
quality off-the-shelf hash function. But even though this strategy might work, we
would actually find performance to bemediocre (see Section 9 on related work, which
discusses this approach), and, without careful examination of the properties of the
hash function, we might not have full confidence that it was not somehow introduc-
ing bias. Thus, instead of stopping there, we will press on, and design something
specifically for the task.

10 This generator, although plausible, is not a widely used generator nor mentioned elsewhere in
the paper (except implicitly as a plotted point in Figures 7 and 15). It fails statistical tests, including
SmallCrush. Normally we use XorShift* 64/32, which performs better, but that would not work for our
accidental inversion scenario—thanks to its 32-bit output, its 64-bit multiplication is not so easy to
invert.
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5.3 Permutation Functions on Tuples

This section contains the key idea that underlies all PCG generators (the “P” in PCG).
The idea is simple, yet powerful when applied to our task.

Suppose you have two permutation functions f : A → A and g : B → B , and
you would like a permutation function on the Cartesian product of their domains,
A × B → A × B . One possible function would be

fg(a, b) = (f (a), g (b)).

Let us call this a simple permutation function on A ×B tuples because we are about to
examine another, more powerful, option. Suppose instead that rather than applying
two functions to both sides of the tuple at once, we focus all our efforts on one side,
say, the right-hand side. We set up a family of permutation functions on B , where
we have a function fa for each a ∈ A. In this case, the following function is also a
permutation function:

f∗(a, b) = (a, fa(b)).

Let us examine two arguments as towhy f∗ is a permutation function onA×B . First, we
can observe that the Cartesian product marries all possible combinations of elements
of A with elements of B , thus, every element of B is passed to each of the permutation
functions in the family exactly once. Second, more practically, there is an obvious
way to invert f∗, given that a was passed through unchanged—thus we can apply the
inverses for all the functions in our family in the exact samemanner.

Obviously, there was nothing special about applying f on the right-hand side; if
we had a family, l , that operates on the left-hand side, we could perform l∗(a, b) =
(lb(a), b). We can also compose multiple permutations together, whether they are
simpleor family-based, and the idea extends tok -tuples because, for example,A×B×C
is isomorphic to (A ×B)×C . Finally, because our topic of interest is a randomnumber
generator with b bits of state, it’s worth realizing that we can break numbers inZ2b

(numbers representedwithb bits) into pairs from theCartesian productZ2k ×Z2b−k ; in
otherwords, using thek leftmost bits as the firstmember of the pair and the remaining
bits as the second.

In the context of random number generation this technique is powerful because it
allows a random number generator to apply its own randomness to itself, in a uniform
way. In particular, if a comes from a random distribution, the permutation functions
in the family f will be applied in an entirely unbiased, yet random, way. This property
is valuable in general, but it is extremely useful for linear congruential generators
where the high bits are fairly randomand the low bits are not (a property we previously
discussed in Section 4.2.2).

Finally, if we drop a from the result, the function becomes a |A|-to-1 uniform
function. We will have woven together several permutation functions, selected at
random, and then removed any clue as what came from where. (Note also that, using
the same arguments we have already made, we can apply function families exactly
analogously for k -to-1 uniform functions as we do for permutation functions—if
fa : B → C is a family of k -to-1 functions for every a ∈ A, then f∗ : A × B → A ×C is
also a k -to-1 function.)
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The application of powerful composable permutation functions is the cornerstone
of the PCG generation scheme, coupledwith the technique of discarding enough infor-
mation to make the permutation impractical to invert. In principle, a PCG generator
could use a bizarre function family of entirely unrelated permutation functions, weav-
ing them together randomly, but in deference to both execution speed and our sanity,
we will focus on families of very closely related permutation functions.

5.4 A Gallery of Permutation Primititves

In this section, we will look at a few permutation functions (and k -to-1 uniform func-
tions) that are particularly well suited to turning the internal state of an LCG into an
output value.

To assist our intuitions, I will provide the same “randogram” visualizations we saw
in Section 4.2; in particular, we will apply them to the pathologically bad LCG we saw
in Figure 8(a). In practice, we would not be using such a bad LCG, but the example
is nevertheless useful for developing an informal notion of what the projection per-
formed by the permutation is doing—if I had used a more realistic LCG such as the
one from Figure 9(c), improvement would still be occurring, but you wouldn’t be able
to see it.

5.4.1 Notation

Before we get started, let’s define some notation.11

• If f and g are functions, f ◦ g is their composition.

• If 〈p, q〉 is a pair, π1〈p, q〉 = p and π2〈p, q〉 = q (i.e., the usual projection
functions).

• splitt (n) : Z2b → Z2t × Z2b−t is the bitwise partition function, making a pair
from the top t bits of n and the remaining bits of n, defined for all b .

• join〈p, q〉 : Z2t × Z2b → Z2t+b is the bitwise join function, undoing any split,
defined for all t , b .

• If n, m ∈ Z2b , n ⊕ m is their bitwise exclusive or, and n ⊗ m is multiplication
mod 2b .

• If n ∈ Z2b and 0 < c < b , n � c is the bitwise clockwise rotation of c bits.

• If n ∈ Z2b and 0 < c < b , n � c ∈ Z2b−c drops the lower c bits (the unsigned
right shift operator in C, >>). We could define it as π1 ◦ splitb−c .

• If n ∈ Z2b and 0 < c < b , n � c ∈ Z2b+c adds the c zero bits on the right-hand
side of n (the left shift operator in C, <<).

11 As with most papers, you can adopt the “read the paper but skip the math” approach. Everything
given in formal notation is also explained in English.
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• If n ∈ Z2b and 0 < c < b , n �� c ∈ Z2c keeps the upper c bits and drops the
lower ones. It’s just a convenient way to say n � (b − c).

• If n ∈ Z2b and 0 < c < b , n �� c ∈ Z2b−c keeps the lower c bits and drops the
upper ones (usually done by masking in C). We could define it as π2 ◦ splitb−c .

In all situations, we will want to permute b bits of state from the generator into r
bits of state to provide as output from the generator. Thus we will desire a 2b−r -to-1
uniform function. Let us call this function the output function.

5.4.2 Dropping Bits Using a Fixed Shift

We have already discussed one simple 2b−r -to-1 output function: dropping low-order
bits. For LCGs andMCGs, the low-order bits have a very short period so this simple
transformation significantly improves their statistical properties. In the randograms
we lookedat inFigures 8 and9,wewere looking at thehigh 8bits of a 16-bit generator; in
the first eight images of Figure 11 wemove our 8-bit window down to see the increasing
weakness of the generated output. Thus, taking the high 8 bits seems wise.

If we were coding our toy generator (which has 16 bits of state and 8 bits of output)
in C, we wouldmost likely write state >> 8 to drop the low 8 bits and keep the high
ones, but in more formal notation and general terms, we could say that for r result
bits from b bits of state, the 2b−r -to-1 uniform function that we’re applying is just the
� function, π1 ◦ splitb .

5.4.3 Dropping Bits Using a Random Shift

Dropping the low 8 bits is a 28-to-1 uniform function, as are all the other bit-dropping
options, which are depicted in Figure 11(a . . .h). Perhaps that gives you an idea; they
could be a family, couldn’t they? We don’t have many bits to play with, so we only
have two choices, a family of twomembers or a family of four. Figure 11(i) shows the
result of allocating the high bit to family-member selection, and Figure 11(j) shows the
result of allocating the top two bits. Note that the more high bits we use, the weaker
the generators we will be combining. It might be tempting to instead build a family
from a, b, c, and d instead, but that would be cheating and we would no longer have a
permutation function.

From an intuitive perspective, this transformation is clearly an improvement.
We began with a terrible LCG, and although the result clearly has some structure it
certainly seems at a gut level like it is an improvement.

Let’s take a second to describe these concepts formally. On b bits, our family of
shifts is

fc (n) = (n � c) �� r,

where r is the number of result bits we are to produce. If we use t top bits to decide
on the shift, our output function becomes π2 ◦ f∗ ◦ splitt .

Now let’s see it as C code, this time for a 64-bit generator with 32 bits of output,
using a family size of eight. I’ll include the multiplication step to give us the entire
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a. Bits 8…15 b. Bits 7…14 c. Bits 6…13 d. Bits 5…12

e. Bits 4…11 f. Bits 3…10 g. Bits 2…9 h. Bits 1…8

i. a and b, mixed j. b …e, mixed

Figure 11 Using shifts to drop bits, both fixed shifts and random ones.

code for random number generation. I’ll write the code tersely, writing the constants
directly and allowing the machine-word size to perform truncation implicitly.

state = state * multiplier + increment;
uint32_t output = state >> (29 - (state >> 61));

That’s it. Two lines. It’s so short that it might be hard to believe (especially if you
started reading the paper in the middle looking for the good stuff—yes, I know there
are readers who do that). The first line is a standard state advance for an LCG, and the
second applies our output function, which is a 232-to-1 uniform function based on
function families. From Figure 11(j), where we applied the analogous output function
to a pathologically bad 16-bit LCG, we have strong intuition that the transformation is
an improvement.

As youmight expect for such short source code, it compiles to a handful of instruc-
tions and executes blazingly fast (we will look at the performance of the PCG family in
detail in Section 6.1). But what about quality?

First, let’s look at things from a theory perspective. In essence we are running eight
(related) linear congruential generators, with moduli and periods between 261 and
254, and randomly choosing between them using another LCG with period 264, but
thanks to the properties of permutation function families, we guarantee that every
one of those eight LCGs is given exactly the same number of turns, doing so in such
a way as to preserve uniformity. Even though the bits of each underlying LCG have
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a short period, the high bit of the LCG, which has a 264 period, affects the shuffling,
meaning that all bits of the output have a 264 period.

Despite every bit of the output having a 264 period, we should realize that we’re
moving a window over the same generator, and thus even as wemove the window, it
is possible for some flaws to still leak through. If, for example, we applied this output
function to a generator that had a tendency to sometimes output big clumps of zero
bits, wiggling a window around would do little to mask it. For LCGs, however, these
issues are likely to be less of a problem because their chief issue is too much regularity.

Empirically, we can turn to TestU01 [29] for some quantitative data. As we saw in
Section 3.3, an unadorned LCG passes BigCrush with 88 bits of state. This algorithm
can be applied at any size b where b ≥ r + 2, so we can test it at a variety of sizes. It
passes with 58 bits of state, making an empirically good 64-bit LCG-based generator
practical.

That’s great, but perhaps you’re concerned that six bits isn’t enough headroom—
we could reasonably surmise that if someone developed MassiveCrush that ran for a
month using 32 GB of RAM, this generator would fail. That’s an entirely valid concern.
But, as we shall see, in the world of PCG generators, this one, which I’ll name PCG-RS
(where RS is for random shift), is theweakest of those we’ll name. Its only redeeming
features are its simplicity and speed.12

5.4.4 Rotations, Fixed and Random

In the last section, we took a well-known action on LCGs, dropping bits, and random-
ized that. This time, we’ll focus on awell-known property, specifically that the high bits
are themost random. They are—unless wemove them somewhere else, which we can
do with a bitwise rotate. Figure 12 captures the effect on the lattice of a rotation—in
essence it changes our perspective on it.

People don’t often rotate LCGs, but all these different lattice structures are prime
candidates for mixing together randomly by considering all eight possible rotations
as a family of permutation functions. Thus, the family is

fc (n) = (n �� r ) � c,

where r is the number of bits of result. If we use t = log2 r top bits to select the
rotation, our output function is, as before, π2 ◦ f∗ ◦ splitt .

We can see the result in our running example in Figure 12(i). Again, we have
considerably improved the randomness of our pathologically bad LCG, supporting
the intuition that this family of permutations is useful. In fact, if you compare the
result with Figure 11(j), youmay think it looks a little “more random”. If so, you’d be
right.

First, rotation is a significant perturbation of the lattice structure creating novel
lattices that would never have been generated by a vanilla LCG. Second, whereas
random shifts needed to use bits 4 . . . 11 some of the time, we are drawing the lattice
only from bits 6 . . . 13 (while bits 14 . . . 16 provide the amount of random rotation to do).

12 Tome, it also has sentimental value because it was the first one I came up with.
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a. Rotate 0 b. Rotate 1 c. Rotate 2 d. Rotate 3

e. Rotate 4 f. Rotate 5 g. Rotate 6 h. Rotate 7

i. a …h, mixed

Figure 12 Applying rotates to bits 6 …13.

As with random shifts, the permutation has changed the period of all output bits.
For our toy 16-bit generator, they all have period 216. Because we are using bits 6 . . . 13
to provide the input to the rotation, this subgenerator has an overall period of 213
and will repeat eight times, but for each repeat, it is placed at a unique rotation (by
bits 14 . . . 16), and all the rotations for all numbers produced by the sub-generator are
different.

As for empirical testing, random rotations (PCG-RR) passes BigCrush at 53 bits,
which is a significant improvement over PCG-RS (which passed at 58 bits). Wemight
surmise that a ReallyMassiveCrush test designed to overtax a 64-bit incarnation of PCG-
RR will need to work 2048 times as hard as BigCrush, which means running for well
over a year and using 1TB of RAM to do so. But random rotation was also low hanging
fruit—we can still do better.

5.5 Xor and Xorshifts

A bitwise xor operation is a permutation, it flips some bits in its target, and can be
inverted simply by repeating the operation. Figure 13(a . . .p) shows the results of
applying different xors to some of the bits in our running example. The pictures are
small because it’s just more of what we’ve already seen—they’re simply a permutation
on the lattice. And, once again, they form a family,

fc (n) = n ⊕ g (c),
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a. Xor 0 b. Xor 1 c. Xor 2 d. Xor 3 e. Xor 4 f. Xor 5 g. Xor 6 h. Xor 7

i. Xor 8 j. Xor 9 k. Xor 10 l. Xor 11 m. Xor 12 n. Xor 13 o. Xor 14 p. Xor 15

q. Maximize Periods r. Avoid Invertability

Figure 13 Applying Xors to bits 9…12.

where g is defined as follows: if n ∈ Z2p and c ∈ Z2q , then g : Z2q → Z2p is defined
as g (c) = c � (p − q); in other words, it is the function that pads c out with zeros on
the righthand side so that it has the same number of bits as n.

But, something is different this time. Unlike previous operations we’ve considered,
applying this family of permutation functions gives us awell-known andwell-analysed
operation, (rightward) xorshift, which is already known to be a permutation function.13
Thus we are able to see them both through the perspectives of previous work and
though the lens of permutation families.

Conventional wisdom about xorshift would have us focus on maximizing the
period of the bits. If that is our goal, we should write our output function, o, as

o(n) = join(f∗(splitr/2(n �� r ))).

In other words, focus on the top r bits, and then perform an xorshift of r/2 bits.
Thus, for a 16-bit generator wanting 8 bits of result, the periods of the bits of output

would be, from high bit to low bit, 216, 215, 214, 213, 216, 215, 214, 213. That option is
shown in Figure 13(q) and you’ll immediately notice that something looks different.
What’s going on. . . ?

Pursuing the goal of maximizing bit periods, we haven’t constructed the output
function following our usual rules. In the two previous examples, we defined it as
π2 ◦ f∗ ◦ splitt , and we could have done so here (with t = r/2), as shown in Figure 13(r).

13 In this construction, fc can only represent xorshifts where the shift is at least as large as the number
of bits being xored; smaller shifts must be performed in stages via function composition. We won’t use
fc to perform any xorshifts where this issue arises.
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What is the difference between these two options? The first, maximize–bit-periods,
version is trivially invertible because we kept the top bits in the output rather than
throwing them away. The second, hard-to-invert, version adds a valuable property but
at some cost; the periods of the bits are now 216, 215, 214, 213, 212, 211, 210, 29, which
is no better than they were to begin with.

At this point, we’re left in something of a quandary, tugged in different directions
by these two principles. We could go with gut intuition based on the diagrams, which
probably leads us towards the second, or we could insist that bit periods are what
matters and stick with the first.

For amoment, let’s adopt an experimentalist approach and see if TestU01 can help
settle the argument (mindful of any stern disapproving looks, as the test suite ought to
be used as final confirmation, not a design tool!). It voteswith its feet for the second ap-
proach by a staggeringmargin—it passes at 60 bits, whereas the conventional-wisdom
approach doesn’t pass until 70 bits; you could even claim that TestU01 considers the
second option a thousand times better! Perhaps applying an invertible permutation
to a low-quality random number doesn’t fool TestU01?

But we can hardly make decisions based on diagrams, intuition and speculation
about how “perceptive” TestU01 is. And it’s worse, because these aren’t the only xor-
shifts we could have done—there are several ways we could have constructed and
applied the permutation family. Wait a second. . . There are several permutations we
could apply, as in, a family of them. And we’re having a hard time choosing. . . So
perhaps we should choose the xorshift randomly? That is exactly what we will do in
the next section!

5.5.1 Random Xorshift

Once again we’ll apply a familiar strategy to our example. Wewill use the top three bits
to choose members of a family of eight permutations, but this time the permutation
is an xorshift. You can see the results in Figure 14.

Constructing the function family is a little challenging because we will use the top
t bits two ways at once—we will use them to both define howmuch of an xorshift to
apply and also to be part of the xorshift itself, all without breaking any of the rules.
(We could avoid this dual-use approach by grabbing t spare bits that we otherwise
wouldn’t need from elsewhere in the state, and xoring them with the top t bits to
create t more bits with the same period but different values. But xors take time, and
we don’t always have spare bits at really small sizes. So instead we’ll use the same bits
two ways.)

To do so, let us define our family function fc : Z2b−t → Z2r , where c ∈ Z2t , as

fc (n) = ((n +� c) �� r ) ⊕ (c � (r − c)),

where the+� operator is rightward xorshift (i.e., x +� y = x ⊕ (x � y )), and apply it in
the usual way, π2 ◦ f∗ ◦ splitt , where t is the number of top bits we wish to devote to
selecting a random xorshift (in essence I have performed the top part of the xorshift
manually, but the bottom part using the+� operator).
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a. Xorshift 3 b. Xorshift 4 c. Xorshift 5 d. Xorshift 6

e. Xorshift 7 f. Xorshift 8 g. Xorshift 9 h. Xorshift 10

i. a …h, mixed

Figure 14 Applying Xorshifts.

This equation may look a bit daunting, but we can check it easily. If we set r = b ,
the family functions should be permutations, and in this case we can quickly verify
that for all c , fc is straightforward to invert.

As you might hope, this output function is an improvement over our previous
ones, and is able to pass BigCrush at only 45 bits. Given that this function is really
the composition of two functions, we shouldn’t be surprised that it performs better,
but this improvement also reminds us that the composition of permutations may be
better than single ones, an idea we’ll look at in more detail in Section 6.

5.5.2 Modular Multiplication

The final permutation function we’ll consider doesn’t need function families. It is
the multiplication step that forms the core of any goodMCG. As we discussed earlier,
it is sometimes used in combination by other generators as an improving step. For
example, there are known weaknesses in XorShift generators, so XorShift* generators
such as RanQ1 [42] add anMCGmultiplication as final step to improve their output.

In contrast, adding an MCGmultiplication (alone) to an LCG or MCGmakes very
little difference to the quality of the output (because two multiplications are identical
to one combinedmultiplication), inspiring a rule of thumb that it is better to combine
different approaches rather than addmore of the same thing [42].

But our previous two output functions, xorshift and randomized xorshift, pushed
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good random bits to the right, and thus a multiplication can shift the randomness
back to the left again and won’t be undoing our earlier multiplications.

5.5.3 AndManyMore. . . Just Follow the Rules

These are just a few of a myriad of possible permutations open to us. There are other
examples of simple permutations that can be cast into the framework of function
families and applied as a tuple permutation, and I would encourage you to think
of some yourself. To that end we will finish with a practical perspective on how to
write your own. I hope this discussion will be particularly useful to any readers who
were daunted by the mathematical formalisms used in the preceding subsections
(although, if you are a programmer, I would encourage you to recognize that math is
much like another kind of code).

Here are the rules for building new permutation functions, in English:

• Bits are precious. You can throw them away but you can’t make new ones, and
you can’t even duplicate the ones you have.

• Divide the bits into two disjoint groups, the target bits and the control bits.

• The control bits determine how to mess with the target bits (sometimes I call
them the opcode). The “messing” is only limited by your imagination, but it
must be a permutation. If you can’t undo it and be back with what you had, it’s
not a permutation.

• While bits are acting as control bits, they must not be modified.

• You can do as many rounds as you like, so bits that were used as control bits in
one round can become target bits in the next.

The above rules are just a restatement of the mathematics, nothing new. (I find this
perspective useful, however. It’s how I think when writing code. It’s like a game, and
it’s actually quite easy to play.)

5.5.4 Summary

In this section we’ve built some useful output functions that can efficiently scramble
the output of a linear congruential generator. Scrambling itself was never the difficulty,
it was doing so in as few operations as possible. All the functions exceptMCGmultiply
are composed from very small number of very fast bitwise operations.

In the next section, we will embrace the composability of permutations to do even
better.

6 SomeMembers of the PCG Family

Having constructed some basic building blocks, we can compose them together to
produce even stronger output functions that formhighly usable generators at a variety
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Figure 15 BigCrush + Crush test failures at different bit sizes.

of bit sizes. The task nowbecomes one not of theory but engineering; wemust balance
trade-offs. For example, a particular output function may offer excellent statistical
results, but lose out to others because it isn’t quite as fast as they are. Different appli-
cations need different things, so we can tailor the output function to favor a particular
criterion.

Because there are a myriad of ways we could combine permutation functions, we
will only discuss a small subset of them, ones that are interesting in some way.

6.1 Performance

Figure 15 shows the statistical performance of the members of the PCG family that
I have chosen to highlight (we will cover them individually in Section 6.3).14 All the
chosenmembers pass BigCrush at 49 bits or less, providing ample headroom for use
at 64 bits. Somemembers pass at much fewer, most notably PCG-RXS-M-XS, which
passes at 36 bits, the minimum permitted by the theoretical model introduced in
Section 3.2. In fact, at sizes less than 36 bits, it exceeds those predictions, which is
possible because the model assumes that all the tests in BigCrush will notice when a
random number generator is forced, by its uniformity, to deviate from truly random
behavior, but whether a particular test actually detects the deviation depends on what
exactly it is testing and how stringently it is doing so.15

The other generators turn in weaker (but still excellent) statistical performance in
furtherance of another goal, speed. The statistically weakest ones are only intended
for fine-tuning 128-bit generators that, by virtue of their large size, can already pass

14 Figure 15 also includes the performance of applying an off-the-shelf hash function, Fast Hash, which
we will discuss in Section 9, Related Work.

15 For the curious, it is only the MaxOft test that brings down PCG-RXS-M-XS at 35 bits. Depending
on luck, sometimes it passes, but too often it gives a 1 in 10,000 p-value, and that’s just not quite good
enough. See Section 10 for more about test methodology.
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BigCrush with significant headroom unassisted.
In contrast, Figure 16 and Table 1 summarize other properties of our family mem-

bers beyond statistical performance, including their speed. For comparison, the bar
chart and table include the most notable and best performing generators from Sec-
tion 2 (although for space reasons some popular generators from Figure 1 that do not
even survive even minimal statistical testing are not included). All the competing
generators except XorShift 64/32 and Arc4Random do not survive statistical testing.
As a reminder, XorShift 64/32 and RanQ1 are the exact same generator, but the latter
claims that you can use all 64 bits of its output, whereas the former does not.

Both the bar chart and the table group the generators into two categories, those
that expose the state of the generator in their output such that it can be trivially re-
constructed from the generator’s output and those that do not. This issue is discussed
in more detail in Section 6.2.2.

The full measurement details are given at the very end of the paper (in Section 10)
because they’re uninteresting for most readers, but there are some points worth
noting. All the PCG generators are very fast; so much so that major speed differences
occur depending on whether a single-cycle addition operation is present or not (as
witnessed by the MCG vs. LCG variants). Similarly, issues such as register selection
and instruction scheduling make a difference at this low level, so I have given every
generator a chance to shine (even non-PCG ones), by compiling them all with two
compilers and two optimization settings (purportedly choosing between optimizing
for speed and code size) and picking the fastest code.

Table 1 also shows the size and periods of these generators. All of the PCG genera-
tors except those marked EXT are very compact. The EXT variants use the extension
techniques that will be described in Section 7.1. For example, PCG-XSH-RS 64/32 (EXT
1024) provides 1024-dimensional equidistribution and a period of 232830.

From this data, you might surmise that the fastest generators are the most prefer-
able, but, formany applications, it is likely that a 0.1 nanosecond difference in the time
to generate a randomnumbermay notmake a significant difference to performance—
even for demanding applications, it is probable that memory bandwidth is likely to
be more of a concern than tiny differences in generator speed.

6.2 Implementation Notes

Before we discuss specific generators, we will examine some commonalities between
their implementations, as provided by the PCG library.16

6.2.1 Four Variants

Each implementation is available in four variants: an extra-fast variant that uses a
MCG rather than an LCG to avoid performing addition (but reduces the period by
a factor of four); a normal variant where the LCG adds an arbitrary fixed constant;
an automatic-unique-stream variant that, at zero space overhead, provides a distinct

16 The PCG library is available at http://www.pcg-random.org/.
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Figure 16 Benchmark performance contrasting PCG generators against widely used
generators. Higher Gb/s is better. All members of the PCG family are faster than other
generators in their class. RanQ1, Mersenne Twister, and Minstd also fail statistical tests.

Method Period State
(Bits)

Output
(Bits)

Speed
(ns/rand)

Speed
(Gb/s)

Best
Compiler

PCG XSL RR RR 128 (LCG) 2128 128 128 1.81 65.86 g++ -O2

PCG RXS M XS 64 (LCG) 264 64 64 1.01 58.77 g++ -O2
RanQ1 264 − 1 64 64 1.35 44.09 g++ -Os
Mersenne Twister 64 219937 − 1 20032 64 2.17 27.48 g++ -O2

PCG RXS M XS 32 (LCG) 232 32 32 1.01 29.49 g++ -Os
Mersenne Twister 32 219937 − 1 20032 32 2.16 13.79 g++ -O2
Minstd 231 − 2 64 31 3.36 8.59 g++ -O2

PCG XSL RR 128/64 (MCG) 2126 128 64 1.05 56.79 clang++ -O2
PCG XSL RR 128/64 (EXT 32) 22174 2176 64 1.29 46.36 clang++ -Os
PCG XSL RR 128/64 (LCG) 2128 128 64 1.70 35.92 g++ -Os

PCG XSH RS 64/32 (MCG) 262 64 32 0.61 48.72 g++ -O2
PCG XSH RR 64/32 (MCG) 262 64 32 0.66 45.31 g++ -O2
PCG XSH RS 64/32 (EXT 1024) 232830 32832 32 0.78 38.29 g++ -O2
PCG XSH RS 64/32 (EXT 2) 2126 128 32 0.78 38.29 g++ -O2
PCG XSH RS 64/32 (LCG) 264 64 32 0.79 37.95 g++ -O2
PCG XSH RR 64/32 (LCG) 264 64 32 0.84 35.67 g++ -O2
XorShift* 64/32 264 − 1 64 32 1.35 22.05 g++ -Os
Arc4Random 21699 ∼ 2064 32 10.29 2.90 g++ -O2

Table 1 Benchmark performance.
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stream compared to its compatriots; and an explicit-switchable-stream variant that
lets the user select a different stream at any point.

These variations are provided by the underlying LCG generation scheme, as we
discussed in Section 4.3.2. As wementioned there, the trick used by the automatic–
unique-stream variant involves using the address (or “object id”) of the state to create
the additive constant and incurs zero additional space cost.

6.2.2 Security Considerations

Thanks to the address-space–layout randomization performed by most modern oper-
ating systems, the automatic–unique-stream variant can produce a different sequence
of random numbers every time the program is run, even if it is seeded with the same
value. In many situations, this feature is advantageous, especially in systems where
unpredictability is an asset, but in settings where repeatability is desired, we can
instead use the normal or explicit-switchable-stream versions instead.

In addition, most of the PCG variations presented in the next section have an
output function that returns only half as many bits as there are in the generator state.
But the mere use of a 2b/2-to -1 function does not guarantee that an adversary cannot
reconstruct generator state from the output. For example, Frieze et al. [12] showed
that if we simply drop the low-order bits, it is possible for an adversary to discover
what they are. Our output functions are much more complex than mere bit dropping,
however, with each adding at least some element of additional challenge. In addition,
one of the generators, PCG-XSL-RR (described in Section 6.3.3), is explicitly designed
to make any attempt at state reconstruction especially difficult, using xor folding to
minimize the amount of information about internal state that leaks out.17 It should be
used when a fast general-purpose generator is needed but enhanced security would
also be desirable. It is also the default generator for 64-bit output.

For sensitive applications, the explicit–switchable-stream variant is probably the
best choice, because it almost triples the number of unknown bits (e.g., in a 128-bit
generator, the output function is a 264-to-1 uniform function requiring a 64-bit guess
to invert, and an additional 127 bits of additive constant must be guessed, too, for a
total of 191 unknownbits).18 Ifmore bits of unknown state are desired, users can turn to
the extension that provides k -dimensional equidistribution, described in Section 7.1.

Although thesepropertiesmake it extremely challenging for anagent observing the
external behavior of a program to guess the state of its random number generator, we
should also consider the case where the entire program state becomes compromised.
For this reason, in programsperforming a sensitive task, once a set of randomnumbers
has been produced, it should advance the generator state by an arbitrary amount and
change the additive constant, thereby destroying the previous state and making it
impossible to recover numbers that were previously generated. Section 7.2 describes
a technique that can allow this action to happen automatically.

17 Related work on the difficulty of inferring a generator’s internal state from its output is discussed in
Section 9.

18 Note that a secret additive constant does not by itself addmuch security, it can only hope to do so
in combination with an appropriately constructed output function [43]
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Finally, in some situations the above security considerations may be counterpro-
ductive. Sometimes users actually desire a b-bit generator that iterates through b-bit
integers with each one occurring exactly once—sometimes for the no-repeats prop-
erty and sometimes because space is at a severe premium. In this situation, we must
use a 1-to-1 output function, which is, by definition, invertible, and allows full recovery
of generator state. To discourage their use by casual users and warm the hearts of
security professionals, these variants are explicitly marked insecure. In contrast, the
normal variants are not explicitly labeled as secure—that would be premature; addi-
tional scrutiny is required for such a claim. We will return to these issues in Sections 8
and 9 which discuss future and related work, respectively.

6.2.3 Instruction-Level Parallelism

The task of calculating the output function and advancing the state are disjoint; one
does not require anything from the other. Thus we can adopt a simple strategy of
calculating the output function using the previous value of the state while, at the same
time, we advance the state. In modern CPUs, which typically have many working
registers and can execute multiple instructions per clock, it is advantageous to apply
this strategy to allow the CPU to get more done at once.

Note, however, that when the state is very large, giving the CPUmore to do at once
can actually be counterproductive, so for optimal performance on a given CPU both
options can be tried. The implementations in the PCG library are structured to allow
this change to be performed trivially.

6.3 Specific Implementations

Now let us examine the five family members we are focusing on in more detail. As
with PCG-RS in Section 5.4.3, sample code will be given tersely for a specific bit size.
The version of the code in the PCG library is longer, uses named constants and can be
applied at multiple bit sizes. (I strongly recommend that people use the library rather
than copy code from this paper.)

Note also that although the generators are presentedwithmnemonic names based
on the permutations they perform, users of the PCG library should rarely select family
members by these mnemonics. The library provides named generators based on
their properties, not their underlying implementations (e.g., pcg32_unique for a
general-purpose 32-bit generator with a unique stream). That way, when future family
members that perform even better are discovered and added (hopefully due to the
discoveries of others), users can switch seamlessly over to them.

6.3.1 32-bit Output, 64-bit State: PCG-XSH-RR

Here the design goal is to be a good all-purpose randomnumber generator. The intent
is to balance speed with statistical performance and reasonable security, charting a
middle-of-the-road path. (It’s the generator that I recommend for most users.)
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The strategy is to perform an xorshift to improve the high bits, then randomly
rotate them so that all bits are full period. Hence themnemonic PCG-XSH-RR, “xorshift
high (bits), random rotation”.

With 64 bits of state, the 32-bit output function can be coded tersely as

output = rotate32((state ^ (state >> 18)) >> 27, state >> 59);

assuming thatrotate32(v,r)denotes anunsigned 32-bit bitwise clockwise rotation
of r bits on v (i.e., v � r ). Note that the top five bits specify the rotation, leading to
the constants above (64 − 5 = 59, 32 − 5 = 27, and b(5 + 32)/2c = 18).

6.3.2 32-bit Output, 64-bit State: PCG-XSH-RS

Because 32-bit output, 64-bit state is likely to be a common use case, there is an
alternative generator thatmakes a slightly different trade-off—slightlyworse statistical
performance for slightly greater speed. This version performs a random shift rather
than a random rotation. (There is an implied fixed shift in PCG-XSH-RR so this version
performs slightly less work.) The difference between the two is minor, and for most
users PCG-XSH-RR is probably the better choice.

With 64 bits of state, the 32-bit output function can be coded tersely as

output = (state ^ (state >> 22)) >> (22 + (state >> 61));

Note that the top three bits specify the amount of the random shift; in this case a shift
of up to seven bits (64 − 3 = 61, and 32 − 3 − 7 = 22).

6.3.3 64-bit Output, 128-bit State: PCG-XSL-RR

This generator is intended for more demanding applications, either those that need
64-bit values or those that need enhanced security. Because it has 128 bits of state,
headroom is less of a concern, so the generator is instead optimized for performance
and security. Performance is a particular concern at 128 bits because for many archi-
tectures the 128-bit value will be represented by two 64-bit processor registers, and
some operations (such as shifts) require several steps to perform.

Thus this generator begins with a 64-bit rightward xorshift. According to BigCrush’s
divinations, this step does essentially nothing to improve quality, but that is not the
goal. First, we needed to perform some kind of xorshift to have both a high-period
target value and a high-period rotation value for the next step, and 64-bit shift is trivial
for the compiler to implement (it doesn’t actually do any shifting at all if the high and
low halves are in distinct registers, just a direct xor). The second andmore important
goal is obfuscation. The resulting value is our whole state folded in on itself. There
are 264 possible states that could generate this value, making it hard to determine
generator state from the output. Finally wemake the real improvement step, a random
rotation, which ensures that all the bits are full period.

This generator uses 128-bit arithmetic, which is efficiently supported by many
of today’s languages (including C and C++ with many popular compilers, including
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GCC and Clang). Platforms that do not make 128-bit arithmetic easy can use a two-
dimensional version of PCG-XSH-RR or PCG-XSH-RS instead, using the techniques
outline in Section 7.1.

The mnemonic PCG-XSL-RR stands for “xorshift low (bits), random rotation”. With
128 bits of state, the 64-bit output function can be coded tersely as

output = rotate64(uint64_t(state ^ (state >> 64)), state >> 122);

assuming thatrotate64(v,r)denotes anunsigned 64-bit bitwise clockwise rotation
of r bits on v (i.e., v � r ). Note that the top six bits specify the rotation, leading to the
constants above (128 − 6 = 122, and 128/2 = 64).

6.3.4 32-bit (or 64-bit) Output & State: PCG-RXS-M-XS (Insecure)

This generator is the most statistically powerful of the ones we are considering—it
can pass BigCrush with only 36 bits of state, the theoretical minimum. In a cruel twist
of fate, we will give it the rottenest job, generating 32 bits of randomness from 32 bits
of state. It’s cruel because the generator has no choice but to perform its permutation
in an invertible way (because the number of output bits and the number of state bits
are the same), and so all of its statistical goodness can be undone by anyone who
knows its permutation function, unmasking the lowly LCG it has inside (but given the
intricateness of the permutation, that is unlikely to happen by accident).

All the output functionswehave seenup tonowwere designed to throwaway some
of the bits, but this output function must improve them all. It does so by composing
three output transformations. First, it performs a random xorshift (described in
Section 5.5.1), which improves the middle bits of the output but necessarily leaves
the upper (control) bits untouched. Then it performs a multiplication step, which
improves the upper bits. Finally, it improves the lowest bits using an xorshift to xor
the bits from the upper third of the number with the bits in the lower third (another
random xorshift would work here too, but these bits only need modest improvement
and the fixed shift is faster).

This somewhat complex output function allows PCG-RXS-M-XS to pass SmallCrush
with 32 bits of both output and state, which is a rarely seen achievement (although
Hellekalek1995 [16] does also manage it, although at dramatically worse speed, as we
previously discussed in Section 2.4). We cannot expect the 32-bit variant to pass Crush
or BigCrush—as we have already seen, even a theoretically ideal generator needs 36
bits of internal state to do so.

PCG-RXS-M-XS can also generate 64 bits of output with 64 bits of state. It can
likewise provide 128 bits of output with 128 bits of state, but the next generator is
custom designed for that task.

Notwithstanding its speed and compactness, all but the most space-constrained
applications should prefer amore secure generator, unless the “every number appears
only once” property is especially useful.
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6.3.5 128-bit Output & State: PCG-XSL-RR-RR (Insecure)

This generator is a simple tweak to PCG-XSL-RR to make it suitable for returning the
whole random state (as inadvisable as that is). It just adds a random rotation to the
high-order bits. It exists for the same reason that PCG-XSL-RR does; we could use PCG-
RXS-M-XS at 128 bits, but if the state is split across two 64-bit registers, multiplication
would be slow, and so we turn to other means instead. It’s not shown on the graph of
statistical performance because it has the same performance as PCG-XSL-RR.

7 Extensions & Tricks

We’re almost done at this point, but there are a couple of final tricks left to cover.
Because PCG permutations are composable, we also gain extensibility. We can allow
an external agent of some kind to interpose its permutation before we apply one of
the permutations we’ve discussed in the previous sections, or apply its own permu-
tation afterwards. This strategy allows us to implement a variety of useful facilities,
including k-dimensional equidistribution for large k at very low cost, and enhanced
cryptographic features.

7.1 Very Long Periods and k-Dimensional Equidistribution

Although we can achieve very long periods and k-dimensional equidistribution for
arbitrary k using the counting techniques we discussed in Section 4.3.4, there is a
better method available to us via the extension mechanism.

As usual, let’s suppose we have a b-bit generator producing r -bit values, which
we shall call the base generator. The extended generator consists of those b-bits of
state and k additional r -bit values (where k ≥ 1), which we shall call the extension
array. We use the state of the base generator to choose a value from the extension
array (by passing the base-generator state through a selector function, s : Z2b → Zk ).
The final output of the combined generator is produced by xoring the selected value
from the extension array with the random number produced by the base generator
(i.e., the result from applying its output function, o : Z2b → Z2r , to its state). Restated
using the formalisms introduced in Section 5.4, the function family for the combined
generator is

fc (〈n1, . . . , nk 〉) = ns(c) ⊕ o(c),

where c ∈ Z2b is the state of the base generator and the argument to f is the extension
array (as a k -tuple). Thus, f∗ : Z2b × (Z2r × · · · × Z2r ) → Z2b × Z2r and the output
function for the extended generator is π2 ◦ f∗.

The selector function can be an arbitrary function, but for simplicity let us assume
that k = 2x and that selection merely drops bits to choose x bits from the state. Two
obvious choices for choosing x bits are taking the high-order bits and taking the low-
order bits. If wewish to perform party tricks like the ones we discussed in Section 4.3.4,
it makes sense to use the low-order bits because they will access all the elements
of the extension array before any elements repeat (due to the property of LCGs that
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the low-order l bits have period 2l ). Conversely, if we use the high-order bits, the
extension array will be accessed in a more unpredictable pattern.

Thus farwehave anoutput function that uniformlymaps the state of the combined
generator to an r -bit value, but wemust also define how the extension array advances.
If the combined generator advances both the base generator and the extension array
though all possible states, we will have a uniform generator (whereas if we do not
advance it at all, we will not!). We can advance the extension array through all possible
states using the same strategy we saw in Section 4.3.4. In particular, we can either
choose to advance the array elements each time they are accessed or less frequently.
The only requirement is that we advance the state of the extension array every time the
primary generator crosses zero so that over the full period of the combined generator
every possible extension array state is married with every possible base-generator
state.

This technique extends generator’s period from 2b to 2kr+b (the factor of k comes
from the k r -bit values in the extension array, andb from the base generator). Because
the only limit onk is thatk ≤ 2b and r ≤ b , themaximumpossible period is 2(2b+1)b ≈

2b2b ; thus the true constraint on period is actually available memory. If the selector
function uses the low-order bits of the state to provide the index into the extension
array, each element of the extension array will be accessed in turn (in some arbitrary
but well-defined sequence), thereby providing k -dimensional equidistribution.

In practice, for base generators with many bits of state (i.e., 128 bits or more), we
can neglect to advance the state of the extension array at all, because we are only
required to advance it when the main generator completes a full period, and that is
going to take a very long time.

In Figure 16 and Table 1, PCG-XSH-RS 64/32 is shown with two-dimensional and
1024-dimensional equidistribution using this mechanism (the EXT 2 and EXT 1024
variants), whereas PCG-XSL-RR 128/64 (EXT 32) provides a longer period but opts for
greater unpredictability rather than 32-dimensional equidistribution. In all cases,
the base generator is an MCG, and the extended variant actually runs faster than the
simple LCG variant, showing that the overheads of the extension mechanism are very
low.

7.2 Enhanced Cryptographic Security

Wecan also use the abovemechanism for added cryptographic security. The extension
array of k xor values addsmore state to the generator, making it evenmore inscrutable.
Moreover, even though it is technically a violation of uniformity, a cryptographic
extension can use the low-order bits to perform an action after every 2i numbers have
been generated, for some i (by performing it when those i bits are all zero). One option,
for example, would be to reset the generator using an external source of entropy.

7.3 Somewhat-Secure Seeding

The seed is fundamental to a random number generator—if you know it, you can
repeat its output. Thus security-conscious applications must pay particular attention
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to choosing their seed in a way that cannot be easily guessed. Current best practice
is obtain random bits from the seed from a trustworthy external source provided by
the system, or to implement a comprehensive seed-management scheme (e.g., as
suggestedbySchneier&Ferguson [10, 11]). Butpractitionerswriting applicationswhere
security isn’t a particular concernmay not bewilling to devote the extra execution time
necessary to apply thesemethods and have a tradition of falling back to fast-but-weak
options.

The permutation functions of PCG can tread a middle ground, allowing a couple
of quickly accessible local sources of entropy to be hashed and combined to produce
a seed that is at least somewhat obscure in minimal time.

8 Conclusion & Future Work

I hope that you will agree that the PCG family of generators significantly raises the
bar for what we should expect from a random number generator. It shows that it is
possible to have one generator that provides all the properties we consider desirable.

I very much hope that others will build on this work. I have outlined somemem-
bers of the PCG family, and they perform very well, but there is always room for
improvement. Possibly there is a PCG generator that performs as quickly as PCG-RS
with the statistical performance of PCG-RXS-M-XS, for example; I would like to hope
so.

Likewise, I would encourage people working with other generation schemes to
use some variation of the assessment methodology I have set out here—in particular
the concept of headroom. In fact, I believe that this conceptmerits further exploration.
Does “16 bits of headroom”mean the same thing for two different generators? Does
the steepness of the different lines in Figures 7 and 15 mean something about the
character of the generator? Surely it must. . . ?

Thoughout the paper, I have not hesitated to point out the predictability of most
general purpose generators and the security concerns such predictability poses. I
have argued that the PCG family is at least a step in the right direction, but I have been
reluctant to make any strong claim about its cryptographic security. It isn’t trivial to
crack the state of a PCG generator, particularly PCG-XSL-RR, but a full cryptographic
analysis is beyond the scope of this paper, and, in any case, is much better performed
by people with a vested interest in finding flaws in the permutation functions. I
hope there are no such flaws, but at least if there are, the issue won’t be architectural;
stronger, more secure output functions could then be developed.

Permutation functions on tuples are a general technique that can probably also
be fruitfully applied to other areas, in particular hashing, but in that domain there are
also powerful engineering tradeoffs to consider. The issue is not performing the best
hash, it is performing the best you can in a given time. Determining the best trade-off
remains an open question, but at least another tool is available for the task.

Some of the most interesting things in computer science rely on random number
generation. I am delighted that the PCG family can be there to help. It is also fitting
that after helping support randomized algorithms for years, we have an excellent
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strategy for randomness and it is itself a randomized algorithm, because that’s the
kind of bootstrapped self-referentiality that makes computer science so wonderful.

9 Related Work

For a broader perspective on random number generation, there are several good sum-
maries. Pierre L’Ecuyer gives an excellent recent summary of the field in a chapter in
theHandbook of Computational Statistics [27]. Knuth’s Art of Computer Programming
[21] also covers the area in depth. Press et al.’s Numerical Recipes [42] also provides
sound practical advice. Schneier & Ferguson [10, 11] provide an excellent grounding
on cryptographic security.

Press et al. [42] advocate strongly for combined generators, arguing that there is
strength in combining multiple generation techniques with different properties. The
PCG family uses a single base generator, but is in some sense a combined approach
because the underlying mechanisms of its output functions are quite different from
the underlying mechanisms its LCG base generator.

This paper advocates for generators whose output range is 2r , for some positive
integer r , because these generators are useful for generating streams of bits (see
Section 2.4.1). In contrast, some generators, such as MRG32k3a [24], are not designed
with a power-of-two output range in mind, instead using a generator with a prime
modulus to produce floating-point values in the range 0–1. Unfortunately, producing
random floating-point values uniformly is tricky (assuming every floating-point value
should have some chance of appearing), because the range of values from 0–1 that
can be represented in floating-point is distinctly nonlinear. In 2014, Taylor Campbell
explained the issue in detail and presented an algorithm for uniformly generating
floating-point values.19 The essence of the algorithm is to repeatedly subdivide the
0–1 interval using a random choice. Interestingly, this algorithm requires a random
bitstream, consuming a variable number of random bits, up to 1024 bits in the worst
case.

The techniques in this paper obviously have strong connections to hashing. In
fact, if we apply a 32-bit rendition of one of the best general-purpose integer hash
functions, Fast Hash20, twice to the output of a linear congruential generator, we can
also pass BigCrush at 36 bits (and fail the exact same test at 35 bits that PCG-RXS-M-XS
did, namely MaxOft). But if the Fast Hash is applied just once, the generator doesn’t
pass until 42 bits as shown in Figure 15. More importantly, the speed of either generator
is mediocre compared to the ones presented in Section 6.3.

The idea of using a random number generator’s own randomness to improve its
output is a very old one, being suggested by Bays &Durham [3]. Typically, however, the
idea has been to shuffle the order of the output or discard someof it. Discarding output
is problematic because, unless undertaken with extreme care, it breaks uniformity.
Shuffling tends to be a local operation that may not adequately mask problems with
the generator and can also prove memory intensive. KnuthB [20] adopts the shuffling

19 Available at http://mumble.net/~campbell/tmp/random_real.c.
20 Available at https://code.google.com/p/fast-hash/.
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strategy, and, as we saw in Section 2.1.2, it does not fare well in empirical tests. PCG
generators have an advantage because they permute the output at a much lower level,
and because they keep some of their state to themselves.

As mentioned in Section 6.2.2, Stern [43] observed that Knuth’s [20] advice to drop
the low-order bits and keep LCG parameters secret is not sufficient for cryptographic
security. Frieze et al. [12] used the LLL algorithm [31] to provide a practical reconstruc-
tion algorithm. More recently, however, Contini [6] showed that secret truncated linear
congruential generators may not necessarily be insecure for properly chosen parame-
ters, giving hope that the obfuscation provided by PCG’s permutation functions may
also be sufficient to make the problem hard. The use of xor folding in PCG-XSL-RR is
somewhat reminiscent of the shrinking generator proposed by Coppersmith et al. [7]
(which combined two generators with xor), but it is probably more akin to Meier &
Staffelbach’s self-shrinking generator variant [37], which has suffered cryptographic
attack (e.g., Zenner et al. [47, 48]), although these attacks appear to be computationally
expensive.

A good general description of possible cryptographic attacks on a randomnumber
generator is given by Kelsey et al. [19], and PCG has at least been designed with
those attacks in mind, but currently lacks a full cryptographic analysis. In contrast,
there are several generators that have had a such an analysis—Schneier & Ferguson
[10, 11] present Fortuna (a successor to Yarrow [18]), a modern cryptographically secure
generator that takes special care to ensure it is seeded in a safe way. Fortuna’s goal
is excellent cryptographic security for use as a stream cipher, rather than a fast rate
of random-number generation. In general, generators designed for stream ciphers
may not have the same concerns about statistical properties (such as uniformity)
compared to general-purpose random number generators. For example, Arc4Random
is not uniform [39, 2].

Turning to speed, Vigna [45, 46] has also suggested that simple low-overhead
generators can produce excellent results. His generators appear to be an improvement
in the world of XorShift* generators, but the improvement comes at a space cost, and
they do not perform as well as the PCG generators described here.

Other recent authors have also focused on attempting to marry good statistical
performance with fast execution and not-unreasonable space usage. Neves & Araujo
[40] suggest a nonlinear generator that, although it does not perform aswell as PCG on
desktop hardware, appears to performwell on GPUs, whereas thus far PCG generators
have not been specialized for that domain.

Several recent authors [45, 46, 40] have produced 128-bit (or more) generators
that pass the BigCrush battery. Presumably their generators really are superior to the
basic 96-bit LCG we saw passing BigCrush and running quickly in Sections 2.1.2, 2.3,
and 3.3, but it would strengthen their results to see the comparison made. Hopefully
the framework presented in Section 3 could be useful in that task.
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10 Test Methodology

Timing tests were run on a Intel “Haswell” Core i7-4770 CPU, running at 3.40GHz
with Turbo-boost disabled, which happens to be the same architecture used by Vigna
[45, 46]. (I achieved very similar results, including sub-nanosecond generation, with
an older computer, a Mid 2012 Retina MacBook Pro, with an Intel Core i7-3720QM
CPU, running at 2.60GHz.) SmallCrush timings use the values reported by the TestU01
suite. Microbenchmark timings were performed using a custom framework that mea-
sured both cycle times using the timestamp counter, and real time using nanosecond-
resolution timing. The test suite measures and subtracts loop overhead, and care is
taken with compiler optimization to make sure that all tests are fair. In particular, the
code is optimized for both size and speed, but heavy optimization settings are avoided
to prevent loop unrolling from obscuring the picture. If anything, this condition is
unfair to the PCG generation scheme because its tiny code size makes unrolling very
viable and can enhance its performance beyond that reported in the paper.

Because the code for PCG generators is extremely small and fast, executing in very
small numbers of cycles, issues such as register selection and instruction scheduling
become significant. Thus for overall fairness, code is compiled (as 64-bit)withmultiple
compilers (GCC 4.8.2 and Clang 3.4) and the fastest code used. It turns out that this
approach was very favorable to the Mersenne Twister—the GCC implementation is
considerably faster than the one used provided by the Boost library or Clang. The
OpenBSD code for Arc4Random was converted to a C++ class to allow it to be fairly
compared with the other generators, which were all written in C++. The full timing
code is provided with the PCG library.

In the interests of space, the data presented in Section 6.1 focuses exclusively
on 64-bit performance on desktop hardware, but the PCG family also performs well
on 32-bit hardware, including lower-end systems.21 For example, in tests run on a
dual-core Cortex-A7 ARM CPU at 1 GHz (in an Allwinner A20 (sun7i) SoC, as might
be found in an embedded system or low-end smartphone), PCG-XSL-RR 64/32 (LCG)
outperforms the 32-bit Mersenne Twister by a factor of 2.07. Interestingly, on the ARM
architecture there is no difference in performance betweenMCG and LCG variants
because ARM has a combined integer multiply-add instruction.

Statistical tests employed twomachines, one with 48 cores and one with twelve.
Neither is particularly powerful or new, but their ability to apply parallelism to the task
of running TestU01 allowed them to devote over a year of CPU time running batteries
of tests on various generators at various sizes in a little over a week.

For TestU01, generators are tested both normally and with their bits reversed. Also,
because TestU01 only expects 32-bit resolution (and actually only tests at 31 bits at a
time), 64-bit generators have both their high and low 32 bits tested. Tests that give a
p-value worse than 1 in 109 are considered clear fails, whereas tests where the p-value
is worse than 1 in 1000 are rerun five times. If a test shows a worse than 1 in 1000 result
in two or more of its retests, it is also considered a fail. In theory, given the number of
generators tested, there was some chance that an unlikely event would have muddied
the waters, but the only such event was the reversed variant of an every-permutation-

21 More performance data, including 32-bit timings can be found at http://www.pcg-random.org/.
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but-the-kitchen-sink generator, PCG-XSH-RR-M-XS, passing BigCrush at 35 bits. So it
can be done. If you’re lucky.

Downloads

Source for the PCG family of generators, in C and C++ is available at http://pcg-
random.org.
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